1,078 research outputs found

    Bibliographic impact of ICLARM

    Get PDF
    Citation analysis, ICLARM publications

    Measuring ICLARM's impact on research and researchers

    Get PDF
    For a research organization such as ICLARM which carries out long-term basic research, justifying money spent can be a difficult exercise. This articles examines different ways by which impact of ICLARM research can be measured

    Measuring ICLARM's impact on research and researchers

    Get PDF
    Citation analysis, Bibliographic information, ICLARM publications

    Form factors in RQM approaches: constraints from space-time translations

    Full text link
    Different relativistic quantum mechanics approaches have recently been used to calculate properties of various systems, form factors in particular. It is known that predictions, which most often rely on a single-particle current approximation, can lead to predictions with a very large range. It was shown that accounting for constraints related to space-time translations could considerably reduce this range. It is shown here that predictions can be made identical for a large range of cases. These ones include the following approaches: instant form, front form, and "point-form" in arbitrary momentum configurations and a dispersion-relation approach which can be considered as the approach which the other ones should converge to. This important result supposes both an implementation of the above constraints and an appropriate single-particle-like current. The change of variables that allows one to establish the equivalence of the approaches is given. Some points are illustrated with numerical results for the ground state of a system consisting of scalar particles.Comment: 37 pages, 7 figures; further comments in ps 16 and 19; further references; modified presentation of some formulas; corrected misprint

    Quark-Squark Alignment Revisited

    Full text link
    We re-examine the possibility that the solution to the supersymmetric flavor problem is related to small mixing angles in gaugino couplings induced by approximate horizontal Abelian symmetries. We prove that, for a large class of models, there is a single viable structure for the down quark mass matrix with four holomorphic zeros. Consequently, we are able to obtain both lower and upper bounds on the supersymmetric mixing angles and predict the contributions to various flavor changing neutral current processes. We find that the most likely signals for alignment are ΔmD\Delta m_D close to the present bound, significant CP violation in D0D0ˉD^0-\bar{D^0} mixing, and shifts of order a few percent in various CP asymmetries in B0B^0 and BsB_s decays. In contrast, the modifications to radiative B decays, to ϵ/ϵ\epsilon^\prime/\epsilon and to KπννˉK\to\pi\nu\bar\nu decays are small. We further investigate a new class of alignment models, where supersymmetric contributions to flavor changing processes are suppressed by both alignment and RGE-induced degeneracy.Comment: 20 pages, 3 figure

    COVID-19 preparedness—a survey among neonatal care providers in low- and middle-income countries

    Get PDF
    Objective - To evaluate COVID-19 pandemic preparedness, available resources, and guidelines for neonatal care delivery among neonatal health care providers in low- and middle-income countries (LMICs) across all continents. Study design - Cross-sectional, web-based survey administered between May and June, 2020. Results - Of 189 invited participants in 69 LMICs, we received 145 (77%) responses from 58 (84%) countries. The pandemic provides significant challenges to neonatal care, particularly in low-income countries. Respondents noted exacerbations of preexisting shortages in staffing, equipment, and isolation capabilities. In Sub-Saharan Africa, 9/35 (26%) respondents noted increased mortality in non-COVID-19-infected infants. Clinical practices on cord clamping, isolation, and breastfeeding varied widely, often not in line with World Health Organization guidelines. Most respondents noted family access restrictions, and limited shared decision-making. Conclusions - Many LMICs face an exacerbation of preexisting resource challenges for neonatal care during the pandemic. Variable approaches to care delivery and deviations from guidelines provide opportunities for international collaborative improvement

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results

    Get PDF
    We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≤ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
    corecore