98 research outputs found

    Differential Stability of PNS and CNS Nodal Complexes When Neuronal Neurofascin Is Lost

    Get PDF
    Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. βIV Spectrin, ankyrin G, and, to a lesser extent, the β1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node

    Live imaging of targeted cell ablation in Xenopus:a new model to study demyelination and repair

    Get PDF
    Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the central nervous system (CNS). In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the E. coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous pro-drug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair

    Neurofascin 140 is an embryonic neuronal neurofascin isoform that promotes the assembly of the node of ranvier

    Get PDF
    Rapid nerve conduction in myelinated nerves requires the clustering of voltage-gated sodium channels at nodes of Ranvier. The Neurofascin (Nfasc) gene has a unique role in node formation because it encodes glial and neuronal isoforms of neurofascin (Nfasc155 and Nfasc186, respectively) with key functions in assembling the nodal macromolecular complex. A third neurofascin, Nfasc140, has also been described; however, neither the cellular origin nor function of this isoform was known. Here we show that Nfasc140 is a neuronal protein strongly expressed during mouse embryonic development. Expression of Nfasc140 persists but declines during the initial stages of node formation, in contrast to Nfasc155 and Nfasc186, which increase. Nevertheless, Nfasc140, like Nfasc186, can cluster voltage-gated sodium channels (Nav) at the developing node of Ranvier and can restore electrophysiological function independently of Nfasc155 and Nfasc186. This suggests that Nfasc140 complements the function of Nfasc155 and Nfasc186 in initial stages of the assembly and stabilization of the nodal complex. Further, Nfasc140 is reexpressed in demyelinated white matter lesions of postmortem brain tissue from human subjects with multiple sclerosis. This expands the critical role of the Nfasc gene in the function of myelinated axons and reveals further redundancy in the mechanisms required for the formation of this crucial structure in the vertebrate nervous system

    The Transcriptional Cofactor Nab2 Is Induced by TGF-β and Suppresses Fibroblast Activation: Physiological Roles and Impaired Expression in Scleroderma

    Get PDF
    By stimulating collagen synthesis and myofibroblasts differentiation, transforming growth factor-β (TGF- β) plays a pivotal role in tissue repair and fibrosis. The early growth response-1 (Egr-1) transcription factor mediates profibrotic TGF-β responses, and its expression is elevated in biopsies from patients with scleroderma. NGF1-A-binding protein 2 (Nab2) is a conserved transcriptional cofactor that directly binds to Egr-1 and positively or negatively modulates Egr-1 target gene transcription. Despite the recognized importance of Nab2 in governing the intensity of Egr-1-dependent responses, the regulation and function of Nab2 in the context of fibrotic TGF-β signaling is unknown. Here we show that TGF-β caused a time-dependent stimulation of Nab2 protein and mRNA in normal fibroblasts. Ectopic expression of Nab2 in these cells blocked Egr-1-dependent transcriptional responses, and abrogated TGF-β-induced stimulation of collagen synthesis and myofibroblasts differentiation. These inhibitory effects of Nab2 involved recruitment of the NuRD chromatin remodeling complex to the COL1A2 promoter and were accompanied by reduced histone H4 acetylation. Mice with targeted deletion of Nab2 displayed increased collagen accumulation in the dermis, and genetic or siRNA-mediated loss of Nab2 in fibroblasts was associated with constitutively elevated collagen synthesis and accentuation of Egr-1-dependent TGF-β responses in vitro. Expression of Nab2 was markedly up-regulated in skin biopsies from patients with scleroderma, and was localized primarily to epidermal keratinocytes. In contrast, little Nab2 could be detected in dermal fibroblasts. These results identify Nab2 as a novel endogenous negative regulator of Egr-1-dependent TGF-β signaling responsible for setting the intensity of fibrotic responses. Defective Nab2 expression or function in dermal fibroblasts might play a role in persistent fibrotic responses in scleroderma

    The Paranodal Cytoskeleton Clusters Na+ Channels At Nodes of Ranvier

    Get PDF
    A high density of Na(+) channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na(+) channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na(+) channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na(+) channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na(+)channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton. DOI: http://dx.doi.org/10.7554/eLife.21392.00

    Sox2 expression in Schwann cells inhibits myelination in vivo and induces influx of macrophages to the nerve

    Get PDF
    Correct myelination is crucial for the function of the peripheral nervous system. Both positive and negative regulators within the axon and Schwann cell function to ensure the correct onset and progression of myelination during both development and following peripheral nerve injury and repair. The Sox2 transcription factor is well known for its roles in the development and maintenance of progenitor and stem cell populations, but has also been proposed in vitro as a negative regulator of myelination in Schwann cells. We wished to test fully whether Sox2 regulates myelination in vivo and show here that sustained Sox2 expression in vivo blocks myelination in the peripheral nerves and maintains Schwann cells in a proliferative non-differentiated state, associated also with increased inflammation within the nerve. The plasticity of Schwann cells allows them to re-myelinate regenerated axons following injury and we show that re-myelination is also blocked by Sox2 expression in Schwann cells. These findings identify Sox2 as a physiological regulator of Schwann cell myelination in vivo and its potential to play a role in disorders of myelination in the peripheral nervous system

    The node of Ranvier in CNS pathology

    Get PDF

    Cell identity switching regulated by retinoic acid signaling maintains homogeneous segments in the hindbrain

    Get PDF
    © 2018 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.devcel.2018.04.003The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK ( FC001217 ), the UK Medical Research Council ( FC001217 ), and the Wellcome Trust ( FC001217).Published versio

    The molecular machinery of myelin gene transcription in Schwann cells

    Get PDF
    During late fetal life, Schwann cells in the peripheral nerves, singled out by the larger axons will transit through a promyelinating stage before exiting the cell cycle and initiating myelin formation. A network of extra- and intracellular signaling pathways, regulating a transcriptional program of cell differentiation, governs this progression of cellular changes, culminating in a highly differentiated cell. In this review we focus on the roles of a number of transcription factors not only in myelination, during normal development, but also in demyelination, following nerve trauma. These factors include specification factors involved in early development of Schwann cells from neural crest (Sox10) as well as factors specifically required for transitions into the promyelinating and myelinating stages (Oct6/Scip and Krox20/Egr2). From this description we can glean the first, still very incomplete, contours of a gene regulatory network that governs myelination and demyelination during development and regeneration

    Mechanisms of sodium channel clustering and its influence on axonal impulse conduction

    Get PDF
    • …
    corecore