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Summary statement: 

We show that, in vivo, the Sox2 transcription factor is a potent inhibitor of Schwann 

cell myelination, promoting both Schwann cell proliferation and macrophage 

infiltration in peripheral nerve. 
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Abstract 

 

Correct myelination is crucial for the function of the peripheral nervous system. Both 

positive and negative regulators within the axon and Schwann cell function to ensure 

the correct onset and progression of myelination during both development and 

following peripheral nerve injury and repair. The Sox2 transcription factor is well 

known for its roles in the development and maintenance of progenitor and stem cell 

populations, but has also been proposed in vitro as a negative regulator of 

myelination in Schwann cells. We wished to test fully whether Sox2 regulates 

myelination in vivo and show here that sustained Sox2 expression in vivo blocks 

myelination in the peripheral nerves and maintains Schwann cells in a proliferative 

non-differentiated state, associated also with increased inflammation within the nerve. 

The plasticity of Schwann cells allows them to re-myelinate regenerated axons 

following injury and we show that re-myelination is also blocked by Sox2 expression 

in Schwann cells. These findings identify Sox2 as a physiological regulator of 

Schwann cell myelination in vivo and its potential to play a role in disorders of 

myelination in the peripheral nervous system. 
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Introduction 

Schwann cells (SC) are the myelinating glia of the peripheral nervous system (PNS), 

they myelinate large diameter axons and provide trophic support for both motor and 

sensory axons. The transcriptional programmes driving both myelination and the 

dedifferentiation of SCs following injury have been partially characterised and many 

positive regulators such as Krox20 (Egr2), Oct6 (SCIP or Tst1), Sox10 and NFATc4 

have been identified by both in vitro and in vivo analysis. However there is still little 

data on potential negative regulators of myelination in vivo that play roles in both the 

correctly timed onset of myelination and possibly in the pathology of demyelinating 

neuropathies of the PNS (Topilko et al., 1994, Svaren and Meijer, 2008, Jaegle et al., 

1996, Finzsch et al., 2010, Kao et al., 2009, Jessen and Mirsky, 2008).  

While the transcription factors Pax3, cJun and Sox2, activation of the Notch pathway, 

as well as signalling through the ERK1/2 and p38 mitogen activated protein (MAP) 

kinases, have been shown to inhibit myelination of SCs in vitro, there is only direct 

genetic evidence for Notch signalling, ERK1/2 and p38 activation regulating these 

processes in vivo (Yang et al., 2012, Le et al., 2005b, Parkinson et al., 2008b, 

Harrisingh et al., 2004b, Woodhoo et al., 2009b, Doddrell et al., 2012, Jessen and 

Mirsky, 2008, Napoli et al., 2012, Ishii et al., 2016, Ishii et al., 2013, Roberts et al., 

2016).  

The high mobility group (HMG) domain transcription factor Sox2 has been shown in 

vitro, using SC/dorsal root ganglion (SC/DRG) co-cultures and adenoviral over-

expression of Sox2 in SCs, to inhibit the induction of Krox20 and myelination of 

axons (Le et al., 2005a), but a demonstration of the potential inhibitory role of Sox2 

in vivo within the intact peripheral nerve has not yet been provided.  
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In order to test the role of Sox2 in vivo, we have made use of a conditional 

Sox2IRESGFP allele (Lu et al., 2010), which is activated in a cell-specific manner by 

crossing with the SC-specific P0-CRE line, and have tested the effects of ongoing 

Sox2 expression upon PNS myelination and repair. These experiments show, for the 

first time, that Sox2 in vivo will suppress PNS myelination and re-myelination 

following injury. In addition, persistent Sox2 expression in the adult nerve is sufficient 

to induce SC proliferation and an ongoing inflammatory state within the intact 

peripheral nerve.  

 

 

 

 

 

  



6 

 

Materials and Methods 

Reagents 

Adenoviruses expressing Krox20/GFP, Sox2/GFP and GFP control were previously 

described (Le et al., 2005b, Nagarajan et al., 2001, Parkinson et al., 2004a, 

Parkinson et al., 2008b). Antibodies against Sox2 were from Novus Biological (NB 

110-37235SS) for western blotting and Millipore (AB5603) for immunostaining. 

Antibodies against myelin basic protein (MBP) (sc-13912),β2A Tubulin (sc-134229) 

and alpha6 integrin (F6) were from Santa Cruz Biotechnology (Wembley, UK).  

Antibodies to N-Cadherin (610920), -catenin (610163) and cJun (610327) were 

from Becton-Dickinson (Oxford, UK). Antibody to Ki67 (Ab15580) was from Abcam 

(Cambridge, UK) and Krox20 (PRB-236P) from Covance (Cambridge, UK). Antibody 

to Sox10 was from Abcam (Ab155279) and laminin alpha2 antibody (ALX-804-190) 

from Enzo (Exeter, UK) Antibodies against myelin protein zero (P0) and periaxin 

were as described (Archelos et al., 1993, Gillespie et al., 1994). Biotinylated 

antibodies, Alexafluor fluorescently conjugated antibodies and fluorescently 

conjugated streptavidin were as previously described (Doddrell et al., 2013b). 

Transgenic mice and genotyping 

Transgenic mouse breeding and experiments were carried out according to Home 

Office regulations under the UK Animals (Scientific Procedures) Act 1986. Ethical 

approval for experiments was granted by Plymouth University Animal Welfare and 

Ethical Review Board. To identify effects of Sox2 over-expression in SCs in vivo, we 

crossed homozygous Rosa26R-Sox2IRESGFP mice (Lu et al., 2010) with P0-CRE 

(mP0-TOTACRE) mice (Feltri et al., 1999).  This generated heterozygous Rosa26 

Sox2IRESGFP CRE positive (+) and CRE negative (-) offspring. Heterozygous 
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Rosa26 Sox2IRESGFP CRE+ animals were then backcrossed with homozygous 

Rosa26 Sox2IRESGFP CRE– mice to generate heterozygous and homozygous 

Rosa26R-Sox2IRESGFP CRE– and CRE+ mice.  CRE+ animals carrying one copy of 

the Rosa26 Sox2IRESGFP transgene are referred to as Sox2HetOE; CRE+ animals 

carrying two copies of the Rosa26 Sox2IRESGFP transgene as Sox2HomoOE mice. 

For analysis of both Sox2HetOE and Sox2HomoOE mice, age and sex-matched CRE- 

animals of the same Rosa26 Sox2IRESGFP transgene status are used as controls. 

For mouse genotyping, genomic DNA was extracted using the HotSHOT method 

and analysed as previously described (Lu et al., 2010, Feltri et al., 1999, Truett et al., 

2000). 

 

Nerve Injury 

For nerve crush injury, the right sciatic nerve was compressed using a pair of round 

end forceps, as previously described (Dun and Parkinson, 2015). The left sciatic 

nerve was left uninjured. Mice were euthanized at the indicated time and both the 

uninjured contralateral and injured distal sciatic nerves collected for analysis.  

 

Cell culture and adenoviral infection 

Rat SCs were prepared from postnatal day 3 rats, as previously described (Brockes 

et al., 1979, Parkinson et al., 2001). SCs were infected with GFP/Krox-20 (GFP/K20) 

(Parkinson et al., 2004a, Nagarajan et al., 2001), control GFP or GFP/ Sox2 

adenovirus (Le et al., 2005b) or both GFP/Sox2 and GFP/K20 (Sox2/K20) 

adenovirus for 24 hours (h) in defined medium (DM) (Jessen et al., 1994) then 

incubated for a further 24h in DM before fixing and immunolabelling.  
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Immunocytochemistry, immunohistochemistry and western blotting 

SCs were cultured on poly L-lysine/laminin coated glass coverslips as previously 

described (Jessen et al., 1994). For immunohistochemical analysis of nerve sections, 

nerves were fixed in 4% w/v paraformaldehyde and embedded for cutting of 

cryosections. All staining, antibodies, counts and confocal and fluorescence 

microscopy were as previously described (Doddrell et al., 2013a, Parkinson et al., 

2008a, Parkinson et al., 2003b). Anti-MBP (1:100) and anti-Ki67 (1:200) antibodies 

were diluted in antibody diluting solution (ADS) with 0.2% Triton X-100 and 

incubated overnight at 4ºC. For western blotting, nerve samples were lysed in SDS 

buffer and protein electrophoresed on SDS-polyacrylamide gels. (Doddrell et al., 

2013b, Parkinson et al., 2004a, Parkinson et al., 2008b, Parkinson et al., 2003a). 

β2A Tubulin was used as loading control for western blots. 

 

Transmission electron microscopy (TEM) 

Nerves were fixed in 2.5% glutaraldehyde in 0.1M phosphate buffer pH 7.2, post-

fixed in 1% osmium tetroxide, dehydrated and embedded in resin. Semi-thin 

sections were cut using a glass knife and stained with toluidine blue. Ultra-thin 

sections were cut and stained with uranyl acetate and lead citrate. Sections were 

photographed and examined using a JEOL 1200EX, or 1400 TEM microscope. For 

quantification of G ratio in intact and injured nerves, axon diameter and fibre (axon 

+ myelin) diameter was measured from 200 axons from each animal using Image J, 

which allowed for myelin thickness and G-ratio calculation. For quantification of 
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numbers of myelinated/degenerated fibres per field, average counts were made 

from 5 separate fields from both P60 control and Sox2HomoOE nerves. 

 

Functional testing  

Motor capacity in 6 and 8 week old mice was assessed by rotarod analysis. Rotarod 

training and final testing was as previously described (Saporta et al., 2012b, Kuhn et 

al., 1995). For these tests, the rod accelerated from 2 to 30 rotations per minute over 

a time period of 250 seconds.  

For measurements of nerve conduction velocity (NCV), sciatic nerves from P21 or 

P90 animals were dissected and placed into a perfusion chamber for 30-45 minutes 

before measurements were initiated. During this time the sciatic nerves were 

incubated at 37ºC, and perfused with artificial cerebrospinal fluid (aCSF) as 

previously described (Fern et al., 1998, Alix and Fern, 2009).  The distal end of the 

sciatic nerve were positioned within an aCSF filled glass stimulating electrode and 

compound action potentials (CAP) induced as previously described (Alix and Fern, 

2009). CAPs were recorded by the second recording aCSF filled glass electrode 

surrounding the proximal end of the sciatic nerve (Fern et al., 1998) and  displayed 

using Signal software (Cambridge Electronic Design).  NCVs were calculated using 

two parameters: (1) the length of the stimulated nerve, and (2) the time difference 

between the start of the stimulus artefact to the peak of the CAP.  

Functional recovery was measured on mice following injury using the static sciatic 

index (SSI) measurement. Paw print measurements were taken using a video 

camera from each mouse before surgery (0 days) and up to 21 days following injury 

to calculate the SSI (Baptista et al., 2007).  
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Statistics 

For all experiments n=3 unless otherwise stated. All graphs display the arithmetic 

mean with error bars representing one standard error of the mean. Statistical 

analysis was carried out using a student t-test and p-value used to denote 

significance. Significance was calculated between control and test groups and 

denoted on figures as:  * p< 0.05, ** p< 0.01 and ***p<0.005. 

Due to small sample sizes (n<5 for most comparisons), assumptions of how well 

normality and equal variances fit data could not be reliably assessed. Sample size 

was not predetermined by statistical methods and randomisation not applied. For 

functional testing by SSI, the evaluation was made by an individual blinded to the 

animal genotype. No samples or data were excluded from the analysis. The n 

number for each experiment is stated in the appropriate Figure legend.  
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Results 

 

Sox2 blocks Krox20-driven expression of myelin-associated proteins. 

 

The analysis of mice with a hypomorphic allele of Krox20/Egr2 (Egr2Lo/Lo) showed 

both PNS hypomyelination and continued post-natal expression of the Sox2 

transcription factor in SCs (Le et al., 2005a). This study also showed that high levels 

of Sox2 in SCs blocked the in vitro induction of Krox20 by cyclic AMP and 

myelination in SC/DRG co-cultures. Previous analysis of inhibitors of myelination, for 

example the cJun transcription factor, have shown that, cJun can both inhibit the 

induction of Krox20 in SCs as well as preventing the activity of exogenously 

expressed Krox20 to induce myelinating SC markers. In this way, cJun acts as an 

inhibitor of myelination both upstream and downstream of Krox20 function 

(Parkinson et al., 2004b). While Sox2 has been shown to block Krox20 induction in 

SCs by cyclic AMP (Le et al., 2005a) we tested whether maintained Sox2 can also 

inhibit the action of the pro-myelinating transcription factor Krox20 to induce 

myelinating SC markers (Parkinson et al., 2004b). In adenoviral co-infection 

experiments, as expected, Krox20 induced both the expression of myelin protein 

zero (P0) and the myelinating cell marker periaxin in SCs (Parkinson et al., 2003b, 

Parkinson et al., 2004b). Co-expression of Sox2 with Krox20 in SCs showed that 

Sox2 strongly antagonised Krox20-induced expression of both P0 and periaxin (Fig. 

1 A-H, I), confirming, in vitro, that maintained Sox2 expression can block the 

myelination programme both upstream and downstream of Krox20 induction in SCs. 
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Sox2 expression inhibits myelination in vivo. 

 

We next tested whether Sox2 can act as an inhibitor of myelination in vivo within the 

intact nerve. A conditional over-expressing allele for Sox2 (Sox2IRESGFP), inserted 

into the Rosa26 locus, has been previously described that upon CRE-mediated 

recombination will express both Sox2 and enhanced green fluorescent protein (GFP) 

(Lu et al., 2010). In order to drive SC-specific expression of Sox2, we used the well 

characterised mP0TOTA-CRE (P0-CRE) line (Feltri et al., 1999) to remove the floxed 

‘stop-cassette’ sequence and allow cell-specific expression of Sox2 and GFP in SCs. 

We have characterised nerves from transgenic CRE+ mice that have either one 

(Sox2HetOE) or both (Sox2HomoOE) recombinant Rosa26-Sox2IRESGFP alleles and the 

effects of Sox2 expression upon PNS myelination and repair.  

 

We first analysed sciatic nerves of mice carrying one copy of the Sox2IRESGFP 

transgene. Rosa26 wild-type/Sox2IRESGFP/CRE+ mice (Sox2HetOE) showed both 

Sox2 and GFP expression in the SCs of the nerve. Sox2 expression in control and 

Sox2HetOE nerves was confirmed by western blot and immunolabelling (Fig. 2I, J and 

Fig. S1 A-D). These nerves and controls were analysed at postnatal day (P) 7 and 

P21 time points by transmission electron microscopy (TEM) (Fig. 2A-D). While there 

is no apparent defect at this stage in axonal sorting, SCs appear to make a normal 

1:1 relationship with the axons, there is a substantial reduction in myelin thickness at 

P7 (Fig. 2 B, E) and at P21 (Fig. 2 D, G), resulting in an increased average G-ratio 

(0.71±0.003) for Sox2HetOE compared to 0.68±0.002 for control at P21. Western 

blotting of sciatic nerve from control and Sox2HetOE at both P3 and P7 showed 
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decreases in Krox20 and the myelin proteins P0 and myelin basic protein (MBP, Fig. 

2I). We also observed significant increases in the numbers of un-myelinated axons 

at both P7 and P21 in Sox2HetOE nerves compared to controls (Fig. 2 F, H). 

 

Analysing Sox2HetOE animals at later timepoints, we observed that the myelination in 

the PNS appeared to return to normal. At P60 there was no significant difference in 

G-ratio compared to control animals (0.65±0.02 for Sox2HetOE compared to 0.66±0.02 

for controls), nerve morphology of Sox2HetOE  nerves was completely normal at P60 

(Fig. 3 L and Fig. S1 J-L) and electrophysiology of Sox2HetOE  nerves showed no 

changes in nerve conduction velocity at P90 compared to control nerves (Fig. S1 I). 

We analysed expression of the Sox2IRESGFP transgene in these Sox2HetOE animals 

and found that the expression of both Sox2 and GFP was high at P7 but declined 

from P21 onwards and were both undetectable at later timepoints, either by western 

blot or by immunocytochemistry (Fig. 2 J and Fig. S1 A-H) ). We were unable to 

discern why expression levels of Sox2 and GFP decline in these Sox2HetOE mice, but 

it does show that loss of Sox2 over-expression in a hypomyelinated nerve from P21 

onwards will allow myelination to proceed and apparently complete normally by P60 

in the mouse PNS.  

 

Next, we performed crosses to generate animals carrying two copies of the 

Sox2IRESGFP transgene and examined whether in this case Sox2 expression 

persisted in the nerve in CRE+ (Sox2HomoOE) animals and the effects of such 

expression. Sox2HomoOE animals showed a similar hypomyelinating phenotype with 

ongoing Sox2 expression at P7, P14 and P21 timepoints in CRE+ animals and Sox2 
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continued to be expressed up to P60, as measured by either immunolabelling or 

western blot (Fig. 3 A-H, K and data not shown). 

P60 adult Sox2HomoOE animals were smaller in size compared to controls and showed 

a typical hindlimb clasping when lifted by the tail (Fig. 3 N-P), indicating a possible 

reduction of PNS myelination. TEM analysis of P60 Sox2HomoOE nerves showed 

hypomyelination within the adult nerve (Fig. 3 I, J), showing that ongoing Sox2 

expression will effectively inhibit myelination even at this later timepoint in vivo. 

Immunocytochemistry and western blotting of Sox2HomoOE nerves at both P7 and P60 

showed reduced levels of Krox20 and of the myelin proteins P0 and MBP (Fig. 3 K 

and Fig. S2 A-F, I). Levels of the Sox10 transcription factor protein, a key driver of 

myelination (Finzsch et al., 2010, Frob et al., 2012)  were unchanged at P7, but 

actually increased in Sox2HomoOE nerves at P60 (Fig. S2 G), presumably due to 

increased numbers of SCs within the nerve. (see below and Fig. 7). Corresponding 

to the reduction in myelin protein expression, a significant increase in the G-ratio and 

numbers of unmyelinated axons was observed in Sox2HomoOE nerves at P60 

compared to control and Sox2HetOE animals (Fig. 3 L, M).  

 

More detailed examination of P7 and P60 Sox2HomoOE nerves showed a number of 

additional effects of Sox2 expression upon nerve morphology. At P7, although SCs 

are making a 1:1 relationship with axons, there is a stalling of the ensheathment (Fig. 

4 A, B). Also at this age, where myelination is observed, we see an apparent lack of 

compaction in the outer myelin membrane layers of the SCs (Fig. 4 D, E). At P60, 

semi-thin and cryostat sections of Sox2HomoOE nerves show reduced myelination, but 

also some evidence of both axonal loss and ongoing myelin breakdown (Fig. 4 F, G, 

Q-T). Additionally at P60 we saw highly disorganised Remak bundles within the 
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Sox2HomoOE nerves, with groups of small diameter axons not separated by SC 

cytoplasm, in contrast to control nerves, and observed SCs extending abnormal 

processes and engulfing collagen fibres (Fig. 4 H-L). An examination of basal lamina 

structure in P60 Sox2HomoOE nerves with 6 integrin and laminin 2 staining showed 

an abnormal and diffuse staining pattern in Sox2HomoOE nerves as compared to 

controls (Fig. 4 M-P).  

Similar SC behaviour was observed using in vitro SC/DRG myelinating co-cultures 

with Sox2-overexpressing SCs; 21 days after ascorbic acid addition to trigger 

myelination, Sox2 overexpressing SCs did not associate correctly with axons, 

produced many cellular processes and produced very little myelin as compared to 

controls (Fig. S3). 

Sox2 over-expression reduces nerve conduction velocity (NCV), motor 

function and sensory function. 

 

Following on from the molecular characterisation of nerves over-expressing Sox2, 

we next compared the NCV in control and Sox2HetOE animals. Analysis of compound 

action potentials in revealed that Sox2HetOE  nerves have significantly decreased 

NCVs  compared to control nerves at P21 (Fig. 5 A; see Fig. S4C for original 

electrophysiological recordings), although this had corrected by P90 (Fig. S1 I), 

consistent with the normal myelination at this timepoint in these animals (Fig S1 J-L). 

Next, motor functional analysis was tested using a rotarod with an increasing speed 

and recording the latency to fall (Saporta et al., 2012b, Wrabetz et al., 2006). A 

significantly reduced latency was observed in Sox2HomoOE mice at both 6 weeks and 

8 weeks of age.  Although not significant, a slight reduction in latency was also 

observed in Sox2HetOE mice at 6 weeks and 8 weeks of age (Fig. 5 B, C).  
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Further analysis of sensory function was carried out using toe pinch (pressure) and 

Von Frey filament (light touch) testing. At 6 weeks of age, toe pinch testing showed a 

reduction in the ability of Sox2HomoOE mice to response to pressure stimuli, compared 

to control and Sox2HetOE mice (Fig. S4 A). In testing using Von Frey filaments, we 

found that Sox2HomoOE mice also had a significantly decreased ability to respond to 

light touch stimuli compared to control mice (Fig. S4 B). 

 

Increased levels of immature SC markers N-Cadherin and cJun in adult 

Sox2HomoOE nerves. 

 

N-cadherin is expressed in the developing nerve and declines during myelination 

with a reciprocal up-regulation of E-cadherin, but is re-expressed following nerve 

injury (Crawford et al., 2008, Wanner et al., 2006). Expression of Sox2 in SCs has 

been shown to drive re-localisation of N-cadherin, a cell surface adhesion molecule, 

and allow SC clustering in the nerve bridge following PNS injury (Parrinello et al., 

2010a). Such clustering is effected by the formation of adherens junctions through a 

calcium-dependent homophilic cadherin-cadherin interaction between SCs (Wanner 

and Wood, 2002). Immunolabelling of P60 sciatic nerve sections showed a clear 

increase in N-cadherin levels in SCs from Sox2HomoOE nerves compared to controls 

with an apparent cell membrane localisation (Fig. 6 A-D). Western blotting confirmed 

an increase in N-cadherin levels in Sox2HomoOE nerves as well as increased levels of 

the cJun transcription factor, a marker of promyelinating SCs (Parkinson et al., 

2004b) (Fig. 6 I, J). 
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-catenin is a binding partner of N-Cadherin and has been shown to both co-localise 

at the SC-axon interface to regulate SC polarity (Lewallen et al., 2011) and to 

positively regulate SC proliferation in SC-DRG co-cultures (Gess et al., 2008). -

catenin immunolabelling showed slightly raised levels of expression in P60 

Sox2HomoOE nerves in vivo (Fig. 6 E-I). Corresponding in vitro experiments with rat 

SCs showed that enforced Sox2 expression alters SC morphology (Fig. S5 A, B), 

localises both N-cadherin and -catenin to the SC membrane in a calcium-

dependent manner (Fig. S5 C-J) and increased the levels of both proteins (Fig. S5 

K); interestingly, expression of a 4-hydroxytamoxifen-regulatable Sox2 (Sox2-ERTM) 

protein in 3T3 fibroblasts was also sufficient to drive upregulation and membrane 

localisation of the N-Cadherin protein following tamoxifen addition in this 

heterologous cell type (Fig. S6 A-E). 

SC proliferation is increased by Sox2 expression in vivo. 

 

In Sox2HomoOE mice we saw increased numbers of SCs within the nerve at ages from 

P7 onwards (Fig. 7 G, H and Fig. S7 F-M). To identify whether Sox2 increased SC 

proliferation in vivo, we immunolabelled P7 and P60 nerve sections with Ki67. The 

number of GFP/Ki67 positive nuclei was significantly increased in Sox2HomoOE mice at 

both P7 and P60 (Fig. 7 A-F, I, J), however no significant increase in Ki67 staining or 

nuclei number was detected at time points as early as P3 (Fig. S7 A-E and data not 

shown).  
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Increased numbers of macrophages in uninjured Sox2-overexpressing nerves.  

Having observed that increased Sox2 expression maintains SCs in a proliferative 

non-myelinating state in the adult nerve, and also some myelin breakdown and 

axonal degeneration, we next tested whether this was associated with any increase 

in macrophages and other immune cells within the intact nerve. By double labelling 

for Iba1 and F4/80, we checked macrophage numbers in P7, P21 and P60 control 

and Sox2HomoOE nerves and found a significant increase in the number of 

macrophages within these intact Sox2HomoOE nerves at both P21 and P60 (Fig. 8 A-

G).  An increase, although not significant, was also found in the numbers of CD3 

positive T-cells in intact P60 Sox2HomoOE nerves compared to controls (Fig. S8). 

 

Sox2 over-expression impairs SC remyelination and functional recovery 

following nerve injury. 

 

Although Sox2 re-expression has been shown to drive cell sorting in the nerve bridge 

following transection injury (Parrinello et al., 2010b), it is not known how maintained 

Sox2 expression in SCs will affect nerve repair and regeneration in the distal nerve 

following a crush injury. Thus, we next investigated the effect of maintained Sox2 

expression on SC re-myelination for up to 21 days post crush injury (21DPI). As 

Sox2HomoOE animals show profound hypomyelination even at P60 we used Sox2HetOE 

animals for these experiments. As described above, in Sox2HetOE mice, Sox2 and 

GFP expression begins to decline at P21 and myelination corrects with a normal 
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nerve morphology and G-ratios at P60 as well as an unchanged nerve conduction 

velocity at P90 in these animals (above and Fig. S1 I-L). 

As we observe transgene expression of both Sox2 and GFP at early developmental 

timepoints in the Sox2HetOE animals, we hypothesized that following PNS injury the 

accompanying de-differentiation of SCs distal to the injury site may be sufficient to 

cause re-activation of transgenic Sox2 and GFP expression in the Sox2HetOE animals, 

allowing us to study effects of ongoing Sox2 expression in a repairing nerve. This 

idea was proved correct and western blot and immunolabelling showed higher levels 

of Sox2 induction in Sox2HetOE animals compared to controls at 7 days post-crush 

injury (DPI) and that Sox2 and GFP expression were maintained at 21 DPI in these 

animals compared to controls (Fig. 9 A-F and L, M).  Using TEM, we evaluated SC 

re-myelination by analysing distal nerve sections from control and Sox2HetOE mice at 

21DPI.  Sox2HetOE sciatic nerves distal to the site of injury were hypomyelinated (Fig. 

9 G, H), with a significantly increased average G-ratio of 0.86±0.028 compared to 

control nerves, which had an average G-ratio of 0.69±0.028 at this timepoint (Fig. 9 I; 

see Fig. S9 A for G-ratio scatter plot). A significant increase in the percentage of 

unmyelinated axons and decrease in P0 protein expression were observed in 

Sox2HetOE mouse nerves at 21DPI (Fig. 9 J, M).  

Whilst numbers of regenerated axons were apparently unchanged, as visualised by 

neurofilament staining, further analysis of regenerated nerves at 21DPI did show a 

significant increase of axonal diameter in the repaired nerves of Sox2HetOE animals 

as compared to controls (Fig. S9 B), as well as significantly increased numbers of 

macrophages still present within the nerve at this timepoint (Fig. S9 C-G). No 
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significant difference in macrophage numbers was observed between uninjured 

nerves from control and Sox2HetOE animals (Fig. S9 G).  

Having observed that Sox2 over-expression post-injury leads to a marked reduction 

in SC re-myelination in Sox2HetOE mice following injury, we next tested the functional 

recovery of these animals.  Tests of functional recovery using an SSI measurement 

showed that recovery in Sox2HetOE   mice was significantly reduced up to 21DPI 

compared to control mice (Fig. 9 K). This experiment validated that in addition to 

impairing remyelination, prolonged Sox2 expression in SCs following injury also 

attenuates functional recovery in these animals. 

We next quantified re-myelination by analysing myelin protein re-expression 

following sciatic nerve injury. Corresponding to the TEM analysis (Fig. 9 G, H), 

western blotting confirmed that continued expression of Sox2 in the SCs of Sox2HetOE 

nerves following injury reduced the re-expression of P0 at 21 DPI in the distal nerve 

(Fig. 9 L, M).  Analysis of SC proliferation in the Sox2HetOE mice at 21 DPI also 

showed an ongoing and significantly increased proliferation in the nerve even at this 

timepoint after injury (Fig. 9 N), once more showing the potential for Sox2 to maintain 

SCs in an undifferentiated and proliferative state in vivo within the nerve.  
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Discussion 

 

Within SCs, the onset of myelination is controlled by a network of transcription 

factors that co-operate to ensure a timely and appropriate ensheathment and 

myelination of axons (Svaren and Meijer, 2008). Mutations in many of these factors, 

such as those in the zinc finger protein Krox20 (Egr2), cause hypomyelinating 

neuropathies in both human patients and rodent models (Funalot et al., 2012, Baloh 

et al., 2009, Desmazieres et al., 2008, Arthur-Farraj et al., 2006, Warner et al., 1999, 

Warner et al., 1998). 

Although there are a number of positive transcriptional regulators of myelination in 

SCs such as Krox20, Sox10, NFATc4 and Oct6, an increasing number of negative 

regulators of myelination such as MAP kinase signalling through p38 and ERK1/2 

pathways, Notch signalling and the transcription factors Pax3 and cJun have been 

shown to block the myelination of SCs (Doddrell et al., 2012, Harrisingh et al., 2004a, 

Woodhoo et al., 2009a, Napoli et al., 2012, Yang et al., 2012, Parkinson et al., 2004b, 

Parkinson et al., 2008a).  

The initial description of Sox2 as an inhibitor of PNS myelination came from the 

finding that mice with a hypomorphic Krox20 (Egr2) allele (Egr2Lo/Lo), and thus 

reduced Krox20 expression, showed hypomyelination and increased expression of 

Sox2 in SCs.  Further experiments, which aimed to determine the function of Sox2 

as a negative regulator of myelination have used a virally-mediated expression 

system in vitro. These experiments showed that over-expression of Sox2 in vitro 

prevents both the induction of myelinating SC markers such as Krox20 and P0 and 

enhanced the proliferation of SCs to the mitogen neuregulin (Le et al., 2005b). Whilst 
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this gives a good indication of Sox2 function, however, as assays of myelination in 

vitro may not fully reflect the situation in vivo (Lewallen et al., 2011, Golan et al., 

2013),  thus the aim of this study was  to fully characterise the effects of maintained 

Sox2 expression upon both myelination and functional repair within the intact nerves 

of the PNS in vivo. In addition, this in vivo approach allows us to measure effects of 

maintained Sox2 expression in SCs upon immune cell influx into the nerve, both 

following injury and in the intact nerve.   

Our experiments show a strong inhibitory effect of Sox2 on the myelination 

programme of SCs at all timepoints examined. The expression of myelinating SC 

markers such as Krox20, myelin basic protein and P0 are all reduced and 

morphological analysis shows a severe hypomyelination of post-natal nerves. 

Correspondingly, an analysis of SC-specific Sox2 nulls has shown a slight 

acceleration of early post-natal myelination (MDA and X-PD, unpublished 

observations), confirming the inhibitory role of Sox2 in controlling developmental 

myelination. However, in contrast to experiments with SC-specific cJun and 

p38alpha MAP kinase nulls (Parkinson et al., 2008a, Roberts et al., 2016), we do not 

observe a function for Sox2 in the down-regulation of myelin proteins following injury. 

Injury experiments in Sox2 null nerves showed a similar profile of myelin protein loss 

compared to controls (X-PD, unpublished observations). Thus the role of Sox2 

appears to be more important in regulating the onset of myelination both during 

development and following injury rather than in the events of SC dedifferentiation 

following axotomy. 

An analysis of other potential Sox2 targets showed, both in vitro and in vivo, that 

Sox2 decreased mRNA and protein levels of the nectin-like protein Necl4 (also 
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known as Cadm4) in SCs (Fig. S10). Inhibition of Necl4 function in SCs, either by 

shRNA knockdown or expression of a dominant negative form of the protein, 

prevents normal SC-axon interaction, Krox20 induction and myelination in vitro 

(Maurel et al., 2007, Golan et al., 2013, Spiegel et al., 2007), but loss of Necl4 in vivo 

is associated with focal hypermyelination and a phenotype resembling several CMT 

subtypes (Golan et al., 2013); it is therefore unclear at present what role, if any, 

decreased Necl4 levels may play in the phenotype we observe in our Sox2 over-

expressing animals.  

Over-expression of the mammalian Lin28 homologue B (Lin28B) RNA binding 

protein and reduction of levels of the let-7 family of microRNAs in SCs has been 

shown to inhibit peripheral nerve myelination in vivo (Gokbuget et al., 2015). As 

Sox2 has been shown to increase Lin28B levels in embryonic stem cells and neural 

progenitors (Cimadamore et al., 2013, Marson et al., 2008), we measured Lin28B 

protein levels in control and Sox2HomoOE nerves at P60.  We do not detect Lin28B 

expression in either control or Sox2HomoOE adult nerve (Fig. S2 H), therefore 

seemingly eliminating the Lin28B/let-7 signalling axis as mediating the Sox2-induced 

hypomyelination. 

 It is still unclear as to why the expression of the Sox2IRESGFP transgene 

declines in the Sox2HetOE animals up to P21, as the construct is inserted into the 

Rosa26 locus and the construct also contains a synthetic cytomegalovirus early 

enhancer / chicken beta actin (CAG) promoter (Lu et al., 2010), but these issues of 

silencing of the transgene expression were not seen in the Sox2HomoOE animals, 

allowing us to monitor the effects of Sox2 expression up to P60 in these animals. 

Analysis of Sox2HetOE nerves up to P60 allowed us to measure the effects of the 
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removal of Sox2 over-expression in SCs from P21 onwards. In this case the nerves 

continued their myelination and by P60 they appeared normally myelinated with G-

ratios similar to control nerves, once again underlining a remarkable ability of SCs 

within the nerve to resume and complete their myelination programme.  

The normal myelination observed in P60 Sox2HetOE nerves and re-activation of 

Sox2 expression following injury  in these animals also allowed us to confirm that 

Sox2 negatively regulates both developmental myelination and re-myelination 

following injury, in contrast to some regulators within SCs that have developmental 

or repair-specific functions (Arthur-Farraj et al., 2012, Fontana et al., 2012, Kim et al., 

2000, Jessen and Mirsky, 2016, Mindos et al., 2017). 

Whether negative regulators of myelination play roles in the pathology of 

human peripheral neuropathies or mouse models of these conditions has been 

recently examined. Increased expression of the cJun transcription factor in SCs has 

been observed in both patients with Charcot-Marie-Tooth (CMT) disease, chronic 

inflammatory demyelinating polyradiculopathy and mouse models of CMT (Saporta 

et al., 2012a, Hutton et al., 2011, Hantke et al., 2014, Klein et al., 2014), and 

although it has been suggested that abnormal expression of cJun may be involved in 

the pathology of the hypomyelination seen (Saporta et al., 2012a), recent work using 

the C3 mouse model of CMT1A showed that cJun expression was actually protective. 

Genetic removal of cJun in the C3 mouse, which models human CMT1A, led to a 

progressive loss of myelinated sensory axons and increasing sensory-motor loss 

(Hantke et al., 2014). Thus, as opposed to driving the neuropathy in these animals, 

raised expression of cJun in SCs is a protective mechanism to ameliorate the 

disease state. Recent reports have shown that levels of Sox2 mRNA are elevated in 
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in mouse models of CMT types 1A and 1B (D'Antonio et al., 2013, Giambonini-

Brugnoli et al., 2005), but any potential roles for this increased expression are 

currently unknown. 

The finding of increased macrophage numbers within both the intact Sox2HomoOE 

nerve at P60 and within the Sox2HetOE nerve following injury suggests a role for Sox2 

in the control of macrophage entry to the nerve, although it is not clear whether this 

is a direct effect or is due to the lack of myelination or the apparent ongoing myelin 

breakdown and axonal loss seen in the adult P60 Sox2HomoOE nerves (Fig. 4 F, G).  

In conclusion, we have identified that Sox2 acts as an in vivo inhibitor of the 

myelinating phenotype of SCs and have shown new roles for this protein in both 

controlling the proliferation of SCs and recruitment of macrophages to the nerve. 
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Figures and Figure legends: 

Figure 1. 

 

Figure 1:  Sox2 antagonises Krox20 induced myelin protein expression in vitro.  

A-H.  Immunofluorescence of rat SCs infected with GFP/Krox20 (A, B, E, F) or 

Sox2/Krox20 (C, D, G, H) expressing adenovirus, showing inhibition of Krox20-

driven periaxin (C, D) and P0 expression (G, H) by Sox2. Hoechst stain (Ho) is used 

to reveal SC nuclei. Scale bars 20m. M. Graph showing the percentage of periaxin 

and P0 positive cells, in GFP/K20 and Sox2/K20 adenoviral infected SCs.  
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Figure 2. 
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Figure 2:  Inhibition of myelination in Sox2 over-expressing mice in vivo. A–D. 

TEM of sciatic nerves from control post-natal day (P) 7 control (A) and Sox2HetOE 

mice (B) and P21 control (C) and Sox2HetOE mice (D).  Scale bar A-D 5 m.   E. 

Graph illustrating distribution of myelin thickness in control and Sox2HetOE mouse 

nerves. F. Graph showing a significant increase in the proportion of unmyelinated 

axons above 1m diameter in the sciatic nerves of P7 Sox2HetOE mice compared to 

control mice.  G. Graph showing the distribution of G-ratio of axons in P21 control 

and Sox2HetOE nerves. H. Graph showing a significant increase in the population of 

unmyelinated axons above 1m diameter in the sciatic nerves of P21 Sox2HetOE mice 

compared to control mice. I. Western blots showing the reduction in Krox20, P0 and 

myelin basic protein (MBP) proteins in P3 and P7 control and Sox2HetOE nerves. J. 

Western blots showing Sox2 and GFP expression in post-natal control and Sox2HetOE 

mice. 
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Figure 3. 

 

Figure 3: Analysis of Sox2 expression and myelination in Sox2HomoOE mice 

carrying two copies of the Sox2IRESGFP transgene. A-H. Immunohistochemical 

analysis of sciatic nerves stained with Sox2 antibody demonstrates that control 
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nerves do not express GFP or Sox2 at P7 (A, B) or P60 (C, D), whereas Sox2HomoOE 

nerves have high levels of GFP and Sox2 expression at both P7 (E, F) and P60 (G, 

H) ages. Scale bars 40m. I, J. TEM images of control (I) and Sox2HomoOE (J) nerves 

at P60. Scale Bar 5m. K. Western blots of control and Sox2HomoOE nerves at P7 and 

P60 showing a reduction in Krox20, P0 and MBP expression in vivo by Sox2 

expression in SCs. L, M. G-ratio measurements (L) and numbers of unmyelinated 

axons above 1m diameter (M) in control, Sox2HetOE and Sox2HomoOE nerves at P60. 

N. Sox2HomoOE mouse (black, on right side of picture) shows a reduced size at P60 

compared to control animals. O, P. Sox2HomoOE animals (P) show hind limb clasping 

when lifted by the tail, characteristic of peripheral hypomyelination, compared to a 

control littermate (O). 
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Figure 4. 

 

Figure 4: Morphology of P7 and P60 control and Sox2HomoOE nerves. A-E. P7 

sciatic nerves from control (C) and Sox2HomoOE animals (A, B, D and E). Whereas in 

control nerves SCs have formed proper myelin (C), in Sox2HomoOE nerves most SCs 

are stalled in the 1:1 stage (A, B). Where Sox2 over-expressing SCs do form myelin, 

they often show non-compaction of the outer myelin layers (white arrowheads in D 

and E).  Scale bars A, B: 500nm; C: 2m; D, E: 200nm. F, G. Semi-thin sections of 

P60 control (F) and Sox2HomoOE (G) nerves; arrows in G indicate possible axonal loss 
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and demyelination. Scale bar 20m. H-L. P60 control and Sox2HomoOE nerves. At P60 

most axons in Sox2HomoOE nerves are amyelinated and are surrounded by redundant 

SC basal lamina (black arrows in H and L) and several SCs show myelin debris in 

the cytoplasm (asterisks in I). Remak bundles, that in control nerves show proper SC 

cytoplasm separating axons (J), show bundles of axons touching each other (‘b’ in K 

and L) and aberrant SC processes (white arrow in L) whose basal lamina forms 

collagen pockets (white arrowheads in L). Scale bars H-L 1m. M-R P60 control and 

Sox2HomoOE nerve sections immunolabelled with 6 integrin (M, N), laminin 2 (O, P) 

and myelin basic protein (MBP)/GFP (Q, R). Scale bars 5m in M-P and 25m in Q, 

R. S, T.  Quantification of numbers of myelinated (S) and degenerating (T) fibres per 

field in P60 control and Sox2HomoOE nerves.  
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Figure 5. 

 

Figure 5: Nerve conduction velocity and motor function is reduced in Sox2 

over-expressing animals. A. Graph comparing the nerve conduction velocity (NCV) 

of sciatic nerves taken from control (n=11) and Sox2HetOE (n=13) mice at P21.  B, C. 

Graph showing the reduction in latency to fall using rotarod testing of control, 

Sox2HetOE and Sox2HomoOE mice at 6 weeks (B) and 8 weeks (C) of age. 6 weeks 

control n=7, Sox2HetOE n=4 and Sox2HomoOE n=6; 8 weeks control n=4, Sox2HetOE n=4 

and Sox2HomoOE n=6. 
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Figure 6. 

 

Figure 6: Expression and localisation of N-Cadherin and -catenin in P60 

Sox2HomoOE nerves. A-H. Immunolabelling of sciatic nerve sections from P60 control 

(A, B, E and F) and Sox2HomoOE (C, D, G and H) nerves showing localisation and 

levels of N-Cadherin (NCad, A-D) and -catenin (cat, E-H) in SCs. Sections are 

counterstained with Hoechst (Ho) to reveal nuclei. Scale bar 20m. I. Western blot 

showing elevated levels of Sox2, N-Cadherin and cJun in P60 Sox2HomoOE nerves as 

compared to controls. J. Quantification of western blots in panel I.  
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Figure 7. 

 

Figure 7: SC numbers and proliferation are increased in Sox2 over-expressing 

nerves. A-F. Sections of sciatic nerves taken from P7 control (A-C) and Sox2HomoOE 

(D-F) mice were immunolabelled with antibodies against Ki67. Scale bar 40m. 

Insets in panels D-F show higher magnification of Ki67/GFP positive SCs. G, H 

Graphs showing an increase in the number of SC nuclei in P7 (G) and P60 (H) 

Sox2HomoOE sciatic nerves compared to controls. Numbers given are total nuclei per 

sciatic nerve transverse section. I, J Graph showing a significant increase in the 

number of GFP/Ki67 positive nuclei in P7 (I) and P60 (J) Sox2HomoOE sciatic nerves 

compared to controls.  
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Figure 8. 

 

Figure 8: Increased numbers of macrophages in intact P60 Sox2HomoOE sciatic 

nerves.  Double immunolabelling of sciatic nerve sections from P60 control (A-C) 

and Sox2HomoOE (D-F) sciatic nerves with F4/80 and Iba1 to identify macrophages. 

Scale bar 40m. Insets in panels D-F show higher magnification of F4/80/Iba1 

double-positive macrophages within the nerve. G. Graphs showing quantification of 

macrophage numbers at P7, P21 and P60; a significant increase in macrophage 

numbers is observed in both P21 and P60 Sox2HomoOE nerves. 
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Figure 9. 
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Figure 9: Sustained Sox2 expression results in hypomyelination and reduced 

functional recovery following nerve injury. A-F Immunolabelling of distal sciatic 

nerves sections 21 days post-crush injury (DPI) with antibodies against Sox2, 

revealed that nerves from control animals no longer expressed Sox2 at this time 

point (A-C), whereas Sox2 (and GFP) levels remained elevated in the distal sciatic 

nerves of injured Sox2HetOE mice (D-F). Scale bar 40m. G, H. TEM pictures of distal 

sciatic nerve sections at 21 DPI revealed that axons in control nerves are 

remyelinated (G), whereas few axons appear to be remyelinated in Sox2HetOE nerves 

(H). Scale bar 5m I. G-ratio measurements revealed that Sox2HetOE sciatic nerves 

were significantly hypomyelinated compared to control nerves at 21 DPI. J. Graph 

showing a significant increase in the percentage of unmyelinated axons in Sox2HetOE 

nerves compared to control nerves at 21 DPI. K. Quantification of functional recovery 

by analysis of static sciatic index (SSI). Control n=5, Sox2HetOE n=7,  L. Western blot 

showing high levels of Sox2 at 21DPI leads to a reduction in P0 expression in 

Sox2HetOE mice. M. Quantification of western blots from panel L. N. Graph showing a 

significant increase in the number of Ki67 positive nuclei in distal Sox2HetOE sciatic 

nerves at 21 DPI compared to controls.  
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