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Abstract The efficient propagation of action potentials

along nervous fibers is necessary for animals to interact

with the environment with timeliness and precision.

Myelination of axons is an essential step to ensure fast

action potential propagation by saltatory conduction, a

process that requires highly concentrated voltage-gated

sodium channels at the nodes of Ranvier. Recent studies

suggest that the clustering of sodium channels can influ-

ence axonal impulse conduction in both myelinated and

unmyelinated fibers, which could have major implications

in disease, particularly demyelinating pathology. This

comprehensive review summarizes the mechanisms gov-

erning the clustering of sodium channels at the peripheral

and central nervous system nodes and the specific roles of

their clustering in influencing action potential conduction.

We further highlight the classical biophysical parameters

implicated in conduction timing, followed by a detailed

discussion on how sodium channel clustering along

unmyelinated axons can impact axonal impulse conduction

in both physiological and pathological contexts.
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Abbreviations

AP Action potential

AIS Axon initial segment

Nav Voltage-gated sodium channels

Kv Voltage-gated potassium channels

PNS Peripheral nervous system

CNS Central nervous system

CAM Cell-adhesion molecule

ECM Extracellular matrix

Nfasc Neurofascin

GPI Glycosyl phosphatidylinositol

MS Multiple sclerosis

GBS Guillain–Barré syndrome

EAE Experimental autoimmune encephalomyelitis

Introduction

Electrical axonal propagation of the action potential (AP)

leads to chemical neurotransmission through synapses,

which drive important nervous system functions such as

motor output, control of visceral organs, encoding of sen-

sory stimuli, and higher order cognitive processing.

Synaptic input received by the neurons is integrated in the

somatodendritic region [1] and the initiation of the AP

occurs at a region called the axon initial segment (AIS) [2].
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The AIS is enriched in voltage-gated ion channels, par-

ticularly voltage-gated sodium channels (Nav) that permit

the entry of depolarizing current in the form of Na? ions [2,

3]. This depolarizing current will then passively spread

along the next segment of axonal membrane downstream

of the active region, while efflux of K? from voltage-gated

potassium channels (Kv) in the regions trailing the AP will

inactivate Nav and slowly bring the patch of axonal

membrane back to its resting potential [2, 3].

Once the AP is triggered, it propagates down the axon to

reach the synaptic terminals to relay information to the

next neuron and carry out proper nervous system functions.

Certain neural functions require adjustment of conduction

velocity to regulate the synchrony of inputs [4] and fast

conduction velocity can be critical for defense and sur-

vival. Several biophysical parameters govern the speed by

which APs are propagated: axonal diameter, sodium

channel density and temperature [3]. In addition, myeli-

nation of axons, which is one of the last evolutionary steps

in the nervous system of jawed vertebrates [5], ensures

rapid propagation of action potentials. Myelin is a lipid-

rich, multilamellar membranous structure produced by

Schwann cells in the peripheral nervous system (PNS) and

oligodendrocytes in the central nervous system (CNS).

Myelin provides both insulation of electric current and

metabolic support for the axon [6–8]. Importantly, between

the segments of myelin are unmyelinated gaps highly

enriched with Nav channels, called the nodes of Ranvier,

which permit the regeneration of the AP and fast AP

propagation through saltatory conduction (Fig. 1a). In

addition, studies have shown that clusters of Nav along

unmyelinated fibers, but also prior to myelination in fibers

destined to be myelinated, can influence axonal impulse

conduction [9–12]. In this review, we will outline the

molecular architecture of the nodes of Ranvier and mech-

anisms underlying the clustering of Nav channels in both

the PNS and CNS. Further detail will be provided to how

APs are propagated along unmyelinated and myelinated

fibers, particularly how different biophysical properties of

the myelin sheath can affect axonal conduction. Finally, we

will describe how the clustering of Nav channels along

unmyelinated and myelinated fibers can regulate AP con-

duction in the physiological and pathological state.

Molecular composition of the nodes of Ranvier

The nodes of Ranvier are macromolecular complexes

of *1 lm length that are highly enriched in voltage-gated

sodium channels [6]. These channels consist of a hetero-

trimeric complex of a pore forming a-subunit of

approximately 260-kDa, and two differing auxiliary b-
subunits that can interact with the a-subunit through non-

covalent interactions (b1Nav and b3Nav) or covalent

disulfide bonds (b2Nav and b4Nav) [13, 14]. The SCNA

family encodes for ten different sodium channel a-subunit
isoforms [15], yet only Nav1.1, Nav1.2, Nav1.6, Nav1.7,

Nav1.8, Nav1.9 have been reported to be clustered at the

nodes [16, 17]. Mammalian sodium channel b-subunits
form a family of five proteins (b1Nav, b1BNav, b2Nav,
b3Nav, and b4Nav) that are encoded by four SCNB genes,

but only b1Nav, b2Nav, and b4Nav are expressed at the

nodes [14, 18–20]. Nav b-subunits are described as ‘‘aux-

iliary’’ subunits, but they play critical roles in regulating

the rate of a-subunit activation and inactivation [21, 22],

regulating the amount of resurgent sodium current and

sodium current density [23–25], and regulating the plasma

membrane insertion of a-subunits [14, 19].

Fig. 1 a Structural organization
of a myelinated neuron and

representation of action

potential initiation and

propagation. b In myelinated

fibers, the action potentials are

regenerated at the nodes of

Ranvier, where high membrane

currents (indicated by the red

arrows) are observed. In case of

demyelination, the propagation

of action potentials is slowed

down or blocked
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In addition to Nav channels, Kv channels, cell-adhesion

molecules (CAMs), cytoskeletal scaffolding proteins, and

extracellular matrix (ECM) components are further clus-

tered at the nodes of Ranvier (Fig. 2a) [6, 16]. The Kv

channels Kv7.2, Kv7.3, and Kv3.1b are responsible for the

repolarization of the axonodal membrane and regulation of

axonal excitability [26–30]. The L1-CAMs neurofascin186

(Nfasc186) and NrCAM are enriched at the nodes of

Ranvier both in the PNS and the CNS [31, 32]. In addition,

the glycosyl phosphatidylinositol (GPI)-anchored CAM

contactin-1 is expressed at nodes only in the CNS [33, 34].

Interaction of Nfasc186, NrCAM or contactin-1 with the

Nav b1-subunit through their extracellular immunoglobu-

lin-like domain may increase functional Nav channel

expression [18, 34, 35]. On the intracellular side of the

nodal axolemma, Nav, Nfasc 186 and NrCAM can bind to

the cytoskeletal scaffolding protein ankyrinG, which in

turn binds with high affinity to bIV-spectrin, providing a

link with the actin cytoskeleton [6, 16, 36]. The glyco-

protein-rich ECM forms a negatively charged complex

surrounding nodes of Ranvier that is involved in cation

buffering and proper stabilization of the nodes [37–41].

Differentiating the PNS and CNS is the presence of Sch-

wann cell microvilli that invade into the PNS nodal

extracellular space and secrete several important molecules

such as gliomedin and NrCAM, which together play a key

role in clustering PNS nodes of Ranvier (see below; [42–

44]). Although Schwann cell microvilli are absent from

CNS nodes of Ranvier, CNS nodes are occasionally con-

tacted by perinodal astrocytes, but their function at these

domains remains to be elucidated [45].

The regions flanking the nodes are the paranodes, where

axoglial junctions between myelin loops and the axon form

a ternary complex via interactions between axonal

Caspr/contactin and glial Nfasc155 (Fig. 2a) [31, 46–50].

Importantly, the paranodes act as a molecular sieve to

restrict the diffusion of nodal components [51].

Cytoskeletal scaffolding proteins are also enriched at

paranodes in both myelinating glia and axons. Glial

expression of the 190- and 270-kDa isoforms of ankyrinG

is enriched in the CNS paranodes, while the 220-kDa iso-

form of ankyrinB is clustered at PNS paranodes [52, 53].

Loss of these glial proteins results in a delay of paranodal

junction formation [52]. Axonal expression of cytoskeletal

scaffolding components in both the CNS and PNS paran-

odes includes 4.1B, aII-spectrin, and ßII-spectrin, which

are implicated in the organization and maintenance of the

paranodal junction [53–58]. Recently, the Kv channel Slo/

BK has been reported to cluster at the paranodes of rodent

cerebellar Purkinje neurons, and its clustering at the para-

nodes is necessary for supporting high-frequency firing that

is characteristic of cerebellar Purkinje neurons [59].

Another important function of the paranodes is to also

act as a segregation barrier between the nodes and the

Fig. 2 a Molecular

organization of the nodes of

Ranvier and surrounding

domains in the CNS and PNS,

respectively. b Mechanisms

implicated in Nav channel

clustering at node-like clusters

and nodes of Ranvier. Node-like

clustering depends on both

intrinsic and extrinsic cues

(oligodendroglial-secreted

factors). Nodal clustering differs

in the CNS and the PNS. In the

CNS, three different

components (paranodes,

extracellular matrix and scaffold

proteins) play a role in Nav
channel assembly. In the PNS,

early clustering of Nfasc186

through its interaction with glial

Gliomedin and NrCAM is

followed by targeting of

scaffold proteins and voltage-

gated channels

Mechanisms of sodium channel clustering and its influence on axonal impulse conduction 725

123



juxtaparanodal regions that are highly enriched with Kv1

[49, 57, 60, 61]. These Kv channels receive little depolar-

izing current since they are underneath the multiple layers

of compacted myelin. The clustering of Kv1 to the juxta-

paranodal regions depends on the cell-adhesion molecules

TAG-1 (expressed on both the glial and axonal sides) and

axonal Caspr2 [62–64]. Underneath this region is a

cytoskeletal complex composed of PSD-93/95, ADAM22,

ßII-spectrin, aII-spectrin, and 4.1B [16]. The latter protein,

4.1B, plays an essential role in assembling the juxtapara-

nodal complex [54].

Mechanisms of nodes of Ranvier assembly

Even though the PNS and CNS nodes of Ranvier have

only little changes in their molecular composition, the

mechanisms underlying their formation are not identical.

This dissimilarity between the two nervous systems

mainly stems from the differences in cell types pro-

ducing the myelin sheath that ultimately govern the

neuron–glia interactions necessary to form the nodes of

Ranvier.

Nav clustering at node of Ranvier in the PNS

During initial myelination of the axon by the Schwann cell,

components of the nodal complex cluster to regions adjacent

to the myelinating segment called heminodes [65]. The initial

steps of heminodal formation, which ultimately gives rise to

mature nodes from the fusion of two heminodes at the edges

of elongating myelin segments, depend on the interactions

between axonal Nfasc186 and gliomedin and NrCAM ema-

nating from Schwann cell microvilli (Fig. 2b) [42–44, 66–

69]. This cooperative interaction is highlighted by the fact that

Nfasc186 fails to properly localize to heminodes in both

NrCAM- and Gliomedin-deficient mice; however, full nodes

of Ranvier ultimately form in these knockouts through para-

nodal junctions acting as a restriction barrier to assemble the

nodal components [44, 70]. For the heminodal assembly, glial

NrCAM stabilizes secreted trimerized gliomedin for

increased interaction with Nfasc186 [43, 44]. The expression

of certain molecules of the basal lamina, microvilli, and ECM

also appears to be involved in promoting the heminodal

clustering mechanism [71–73]. Then, Nfasc186 plays an

important role in nucleating and incorporating the nodal

components to the axolemma (Fig. 2b). Nfasc186 interacts

with ankyrinG, which in turn is able to recruit Nav channels

and its scaffolding partner bIV-spectrin [66, 67, 74, 75].

Axoglial contact mediated by gliomedin, NrCAM and

Nfasc186 also contributes to the long-term maintenance of

Nav channels at nodes of Ranvier [76].

Nav clustering at node of Ranvier in the CNS

In contrast to the PNS, the molecular mechanisms under-

lying nodal assembly in the CNS are still partly understood.

Three complementary mechanisms have been established

to participate in CNS nodal assembly: ECM-induced cell-

adhesion molecule clustering, scaffolding molecules

anchoring the nodal complex to the actin cytoskeleton, and

paranodal barrier formation (Fig. 2b) [41]. However, their

relative importance and whether differences exist between

neuronal subpopulations is still debated. In contrast to

Schwann cells, oligodendrocytes do not contact nodes

directly and do not express gliomedin. Other glia-derived

ECM proteins (i.e., chondroitin sulfate proteoglycans,

tenascin-R, Bral1) form complexes with axonal CAMs

such as Nfasc186, NrCAM, contactin-1 and the b-subunits
of sodium channels [37–39, 77, 78]. Yet, the clustering of

ECM molecules at the nodes of Ranvier in vivo occurs

after the clustering of axonodal components in the mouse

optic nerve [41], and nodal assembly still occurs in mutant

mice lacking these ECM proteins, suggesting that ECM

molecules may be involved in the stabilization of the nodes

rather than initiating their assembly [37, 39–41, 77].

Axonodal CAMs contribute to the assembly of CNS

nodes of Ranvier. Transgenic expression of axonal

Nfasc186 or Nfasc140 in Nfasc-null mice, which form

neither nodes nor paranodes, rescues Nav, CAMs, ECM

and cytoskeletal components of the CNS nodes of Ranvier

[61, 79]. In addition, loss of the CNS nodal and paranodal

GPI-anchored protein Contactin-1 results in reduced

numbers of nodes of Ranvier [80].

The paranodal barrier formed through direct axoglial

contacts established at the paranodal junctions also partici-

pates in the assembly of CNS nodes of Ranvier [41, 81]. In

this context, in Nfasc null mice, the reconstitution of para-

nodes by glial expression of Nfasc155 is sufficient to rescue

Nav channel clustering [61]. Double knockout mice for bIV-
spectrin and ECM components (thereby leaving the paran-

odal junctions intact) can still assemble CNS nodes of

Ranvier, albeit with reduced Nav clustering compared to

wild-type and single knockout mice [41]. However, other

studies have shown that the timing or number of developing

nodes of Ranvier is unaffected by either suppressing the

paranodes through inactivation of genes coding for the

paranodal constituents Caspr and Nfasc155 or by disrupting

the paranodal junctions through loss of myelin proteins or

lipids [49, 61, 82–85]. Overall, these results suggest that,

while paranodal junctions have the ability to cluster CNS

nodes of Ranvier, they might not be essential for CNS nodal

assembly. Conversely, paranodal junctions are particularly

important for nodal maintenance, suggesting that mecha-

nisms of nodal stabilization depend on protein–protein

726 S. A. Freeman et al.
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interactions that are different from those that dominate ini-

tial assembly [51, 83, 86].

CNS nodes of Ranvier can also be assembled through

intrinsic neuronal mechanisms directed by axonal scaf-

folding proteins such as ankyrinG. AnkyrinG is able to

bind several membrane-spanning axonodal proteins

through its multiple ANK repeats and connects them to the

neuronal actin cytoskeleton [87], thereby laying the foun-

dation for a large heterogeneous macromolecular complex

at the nodes. The importance of ankyrinG in CNS nodal

assembly is highlighted by the fact that loss of the giant

270- and 480-kDa ankyrinG splice variants results in a

significant reduction in CNS nodal formation [88]. How-

ever, it has also been reported that erythrocyte ankyrin,

ankyrinR, can substitute for ankyrinG when ankyrinG is

completely lost [89]. AnkyrinG also plays an important

role in trafficking Nav to the nodes via its direct interaction

with the conventional anterograde microtubule motor

kinesin-1 [90]. Taken together, these results point to

ankyrinG as an important molecule that directs CNS nodes

of Ranvier assembly through linking the nodal components

together and through trafficking of Nav channels.

Finally, axonal clustering of Nav channels before myelin

deposition and oligodendroglial contact has been shown to

occur in retinal ganglion cell cultures, where these clusters

were induced by oligodendroglial-secreted factor(s) [91,

92]. More recently, it has been shown that nodal-like

clusters (i.e., clusters of Nav channels colocalizing with the

scaffold protein ankyrinG and nodal CAMs) are detected

before myelin deposition along axons in hippocampal

neuron-glia cultures and in the developing hippocampus

in vivo. These clusters can be induced by oligodendroglial-

secreted factor(s) and depend on ankyrinG for their

assembly [11]. Importantly, nodal-like clusters are restric-

ted to hippocampal GABAergic neurons, whereas

clustering of nodal proteins along the axons of hippocam-

pal pyramidal neurons occurs concomitantly with myelin

ensheathment, suggesting separate mechanisms of assem-

bly among different regional neuronal subpopulations [11].

Clustering of Nav channels will eventually influence AP

propagation along axons and the specific role of their clus-

tering, as well as the classical biophysical parameters

implicated in conduction velocity will be further highlighted.

Action potential initiation and propagation
along unmyelinated fibers

The preferred site of AP initiation is the distal end of the AIS

[93, 94], where the density of low-threshold Nav1.6 sodium

channels is highest [95]. During AP initiation, the active

depolarization backpropagates to the soma (antidromic) and

down the axon (orthodromic) [96, 97]. Propagation of the

AP along the axon is dependent on how fast the membrane

is able to charge, which is determined by the membrane

capacitance (how much charge is stored on the axonal

membrane per unit area) and the axial resistance (how

resistant the interior axonal medium is to electrical current).

Factors involved in how quickly the membrane will charge,

and consequently increasing conduction velocity, are char-

acterized by either a reduction in the membrane capacitance

or a reduction in the internal axial resistance [98]. The

reduction in the internal axial resistance may be achieved

through increasing the diameter of the axon, which reduces

the resistivity Na? ions must face as they passively spread

through the axoplasm. Accordingly, the AP conduction

velocity in unmyelinated axons is generally described from

theoretical calculations to be proportional to the square root

of the axonal diameter [99, 100].

Conduction velocity along unmyelinated vertebrate CNS

axons can be measured electrophysiologically using dual

soma-axon patch clamp recordings in pyramidal neurons in

acute brain slices [94], or by patching axon ‘‘blebs’’ where

investigators patch both the soma and the cut end of the

axon in pyramidal cells or interneurons [101–106]. Ortho-

dromic conduction velocities along these axons ranged from

0.2 to *1.45 ms-1 (for review see [107]).

Regulation of action potential propagation
along myelinated fibers

While increasing axonal diameter is a viable solution for

rapid axonal conduction, it also comes at a price in terms of

space constraints and energetics [108]. Maintaining the

extracellular Na? and intracellular K? ion gradient,

mediated through the action of Na?/K? pumps, is ener-

getically costly [109], even though ion channel kinetics

underlying the AP in pyramidal neurons are built to be

energy-efficient and to minimize the overlap of Na? and

K? ion fluxes [110]. Cerebellar Purkinje neurons and fast-

spiking interneurons, however, have incomplete inactiva-

tion of sodium channels leading to reduced metabolic

efficiency [111].

Myelination permits optimization of fast axonal AP

propagation over long distances. The insulating properties

of the myelin sheath reduce the leakage of Na? current that

flows down the axon (i.e., increase in axial resistance) and

reduce the axonal capacitance in conjunction with nodes of

Ranvier, thereby allowing for faster charging of the axonal

membrane [98]. Myelination is generally beneficial in

increasing conduction velocity compared to the unmyeli-

nated nerve when the CNS axonal diameter is above

0.2 lm [112]. Indeed, this fact correlates well with the

finding that only axons with a diameter[ 0.2 lm can be

myelinated in the CNS [112]. The speed of nervous

Mechanisms of sodium channel clustering and its influence on axonal impulse conduction 727
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conduction in myelinated axons is linearly proportional to

the axonal diameter [99, 113], partly due to increased

myelin thickness [113, 114].

Together with axonal diameter, the thickness of the

myelin sheath plays an important role in speed of axonal

AP propagation. Typically, myelinated axons are classified

by their g-ratio, which is a calculation of the ratio between

the axonal diameter to the overall diameter of the fiber, and

this ratio is optimized (g-ratio between 0.6 and 0.77) to

ensure maximal conduction and efficiency [99, 115]. The

regulation of myelin thickness is highly important in

maintaining this optimum since hypermyelination, such as

that observed in the absence of Dlg1-PTEN in peripheral

nerves, can lead to unstable myelin sheaths which may

ultimately attenuate nerve conduction [116]. The paranodal

junctions are key determinants in maintaining rapid axonal

conduction through their barrier-like seals that form

between the paranodal loops of the myelinating glial cells

and the axolemma. These junctions are important for

restricting the short-circuiting of the nodes of Ranvier

[117] and for metabolic savings for AP regeneration [98].

Conduction timing along myelinated neurons in the

CNS ranges from modestly fast to rapidly conducting

[107]. Utilizing the dual patch soma-bleb technique or

rapid acquisition of voltage changes through voltage-sen-

sitive dyes reports of conduction speeds in pyramidal

neurons of the cortex range from *0.5 to 4.5 ms-1 [96,

97, 118, 119]. Conduction speeds along Purkinje cell axons

obtained from bleb recordings and more recently from

extracellular antidromic axonal recordings range between

0.52 and 0.77 ms-1 [59, 120]. These values are not much

faster compared to those of the unmyelinated axons in the

brain, most likely related to the small diameters of these

axons. Indeed, in larger diameter axons, such as in

motoneurons and along adult mouse sciatic nerve, action

potential conduction can reach up to 80 ms-1 [121, 122].

Differences and lower speeds of conduction in the cortex

could be related to the fact that these neurons may need to

synchronize conduction timing for proper cortical circuit

activity, and also that these neurons may be maximizing

their metabolic energetic needs in preference to a further

increase in axonal conduction.

Nav channel clustering regulates axonal
conduction

Concentration of Nav channels and size

and structure of the nodes of Ranvier

Not only are axonal diameter and myelin sheath thickness

crucial for increasing conduction velocity, but also the

density of Nav channels. A recent study has shown that

along unmyelinated basket cell hippocampal axons, Nav
conductance density increases tenfold in a gradient-wise

manner from the soma (2.6 channels/lm2) towards the

proximal axon (25 channels/lm2 in the proximal axon),

followed by a further increase in Nav density at the distal

axon (46.1 channels/lm2) [105]. This increase in distal Nav
channels ensures a supercritical density necessary for

supporting fast AP propagation along the axons of these

fast-spiking GABAergic neurons [105]. In myelinated

fibers, however, Nav is highly clustered at the nodes of

Ranvier in the order of *1200 channels/lm2 [123], while

internodes contain *20–25 channels/lm2 [124]. Theoret-

ical and experimental studies show that this asymmetrical

concentration of Nav between the nodes of Ranvier and the

internodes reduces the axonal capacitance and the con-

centration of Na? necessary to regenerate the AP, resulting

in improving energy efficiency [9, 125, 126]. Moreover,

ECM glycoproteins surrounding the nodes of Ranvier can

increase conduction velocity through concentrating Na? in

the vicinity of Nav channels [37, 40]. Another advantage of

this restriction of high density of Nav at the nodes of

Ranvier is that it permits high-fidelity impulse conduction

because the ratio of current available to stimulate the node

to the current necessary to depolarize the node, otherwise

called the safety factor, is very high (in the order of 5–7).

When the safety factor is less than 1, such as in the case of

drastic changes in axonal geometry and also in demyeli-

nating pathologies, conduction block occurs and the AP

fails to propagate [3].

A second component related to the nodal capacitance is

the membrane area occupied by the node of Ranvier.

Increasing the size of the nodes of Ranvier can alter con-

duction velocity, such that an increase in nodal length

would result in slowing of the AP being regenerated at the

adjacent node due to increased nodal capacitance. Experi-

mental evidence in the electric organ of Sternarchus

showed that large nodes of Ranvier have delayed conduc-

tion compared to smaller nodes of Ranvier [127]. A recent

theoretical study has also demonstrated that conduction

velocity decreases when the nodal width is increased [128].

In addition, fenestrated nodes and the wide submyelinic

space form the basis for unusually fast impulse conduction

in shrimp giant nerve fibers that display remarkable con-

duction speeds of more than 200 ms-1, making them

among the fastest-conducting fibers recorded [129].

Sodium channel isoforms

The biophysical gating properties of the Nav subunits allow

for several types of current flow through the pore of the

Nav a -subunit, and can therefore support several types of

neuronal AP firing properties, which may affect AP con-

duction. At the AIS of cortical pyramidal neurons, two Nav

728 S. A. Freeman et al.
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channel isoforms are asymmetrically distributed: Nav1.2 is

enriched in the proximal part of the AIS and it has a high

threshold for activation. The low-threshold Nav1.6 accu-

mulates at the distal end, and therefore, favors spike

initiation at this region [95]. At the nodes of Ranvier,

several different Nav channel isoforms cluster at varying

developmental stages [11, 92, 130, 131], and the relative

contribution of the various nodal ion channels on axonal

conduction is poorly understood. Our understanding of the

roles of Nav isoforms in relation to AP conduction is cur-

rently limited to electrophysiological studies investigating

the biophysical gating and current dynamics of the nodal

Nav isoforms. Nav1.2, which is primarily associated to the

mammalian immature PNS and CNS nodal-like clusters

and nodes of Ranvier [11, 92, 130, 132, 133] needs large

depolarizing current to fire and inactivates during high-

frequency firing [134]. Nav1.6 and Nav1.1, which are

clustered to mature nodes of Ranvier and nodal-like clus-

ters in the PNS and CNS [11, 130, 131, 133, 135],

participate in persistent sodium current [134, 136, 137].

This slowly inactivating current may therefore drive faster

conduction through the increase of axoplasmic Na? [134,

137–139]. With their low-threshold voltage dependence,

Nav1.6 may favor spike initiation not only in the AIS but

also ectopically, at the nodes. Nav1.6 rapidly recovers from

inactivation and may also sustain high rates of activity

[140, 141]. These data suggest that the sodium channel

subunit composition at nodes of Ranvier may contribute to

a high safety factor for AP propagation fidelity [107].

Nevertheless, further tools need to be developed to

understand the different contributions of each nodal Nav
isoform on AP conduction.

Number of nodes and internodal length

Theoretical and experimental evidence suggests that

myelinated axons have an optimal internodal length for

maximal conduction, but changes in the internodal length

may have modest to drastic consequences to conduction

velocity based on their shortening or lengthening [113,

114, 142–148]. Court and colleagues (2004) showed that,

in periaxin-null mice where Schwann cell elongation fails,

thereby exhibiting decreased internodal length but normal

axon diameter and myelin thickness, conduction velocity

along these fibers was significantly decreased, suggesting

that conduction velocities are highly sensitive to substan-

tially shorter internodal lengths [143]. Shortened internodal

lengths, however, may be physiologically relevant in syn-

chronizing conduction timing of different inputs [149]. In

the avian auditory brainstem, nucleus magnocellaris cells

in the avian cochlear nucleus have both ipsilateral and

contralateral inputs to the nucleus laminaris, which is

responsible for the processing of auditory information.

Challenges in synchronizing aural input arise when taking

the length difference of * 1600 lm between the con-

tralateral and ipsilateral axonal branches from nucleus

magnocellaris—yet, proper simultaneous timing of input is

ensured by the ipsilateral projections having shorter

internodes and a smaller axonal diameter than that of the

contralateral projections [149]. Thus, in the case of the

avian auditory system, shortened internodes act as a phy-

sio-anatomical way of slowing down AP conduction and

therefore secure correct encoding of auditory information

from bilateral inputs [149, 150]. However, recent work

from Ford et al., in analogous mammalian auditory brain-

stem circuits, reports that axons responding to low-

frequency sounds had a larger diameter but shorter

internodes than high-frequency axons, and higher conduc-

tion velocities. Moreover, internode length decreased and

nodes of Ranvier diameter increased progressively along

the distal axon segments, which simulations predict was

important to adjust precisely the conduction velocity of

APs within the circuit [148].

Although significant shortening of the internodes gives

rise to substantial variations in AP conduction velocity

[143, 144], lengthening of the internodal region appears to

have only modest effects on conduction velocity at inter-

mediate lengths [98, 144]. Experimental evidence

correlates well with these theoretical studies. Mutant mice

lacking the N-terminal PDZ domain of periaxin delays

Schwann cell elongation and results in shorter internodes

and lowered conduction velocities compared to controls at

3 and 6 weeks of age [145]. However, at 16 weeks of age,

conduction velocities are indistinguishable between mutant

and wild-type mice even though internodal lengths are

significantly different, suggesting that conduction velocity

speeds reach a ‘‘flat maximum’’ once the distance between

nodes have reached a certain threshold. Simpson and col-

leagues further showed that by increasing internodal length

by up to 35 % and keeping axon diameter and myelin

sheath thickness constant, there was no significant increase

in axonal conduction speeds [146]. Together, these theo-

retical and experimental data suggest that increases in

internodal distance above the optimum result in insignifi-

cant changes in axonal impulse conduction.

Finally, a recent work from Tomassy et al. has described

a new pattern of myelin distribution along single axons,

where myelinated segments are interspaced with long,

unmyelinated tracts, in some pyramidal neurons in the

neocortex [151]. Although the functional consequences of

these heterogeneous profiles of myelination await further

identification, the profile of longitudinal distribution of

myelin may have evolved as a strategy to modulate long-

distance communication in the neocortex [151].
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Nav clustering along unmyelinated axons

Several reports have observed nodal-like clusters of Nav
along unmyelinated fibers. These have been reported in

both the PNS and CNS fibers in a number of different

species including the marine invertebrate Aplysia [12],

zebrafish mutants lacking Schwann cells in peripheral

nerves [152], rodent retinal ganglion cells [85, 86] and

hippocampal GABAergic interneurons [11, 91, 92], in

dorsal and ventral spinal roots of dystrophic mice lacking

merosin [153], in lipid rafts of group-C nerve fibers [154],

and unmyelinated axonal segments in non-pathological

human dental pulp [155]. In light of these qualitative

observations, what could be the possible functional role of

these dense aggregates of Nav along unmyelinated axons?

Few studies have attempted to assess the physiological

role of these focal Nav clusters. Waxman et al. (1983) using

transmission and freeze-fracture electron microscopy pro-

posed that the electron-dense subaxolemmal particles along

the axons of the nerve fiber layer of the adult rat retina

could correspond to clusters of Nav that act as electrogenic

‘‘hot-spots’’ [156, 157]. Further theoretical work by John-

ston and colleagues (1996) modeling their observation of

Nav clusters along cultured and ganglion neurons from

Aplysia showed that the clustering of Nav along unmyeli-

nated axons required 30–60 % fewer channels to propagate

APs compared to an evenly diffuse expression of Nav,

suggesting that the physical clustering of these channels

acts as a way of optimizing AP conduction [12]. Recent

work by Freeman et al. also suggests that these clusters are

associated with increased AP conduction. Through simul-

taneous soma-axon electrophysiological recordings, they

observed that nodal-like clusters along GABAergic axons

increase conduction velocity by 150 % in comparison to

GABAergic axons without clusters [11]. Importantly, this

increase is observed independently of axonal caliber, rep-

resenting a novel means for accelerated axonal propagation

of APs before myelin deposition [11]. This augmentation in

AP conduction may also underlie what was observed by

Foster and colleagues (1982) when they reported that

during rat optic nerve development there was an increase in

AP conduction prior to myelination that could not be

accounted by an increase in axonal caliber [158]. More-

over, experimental and theoretical findings suggest that

micro-saltatory conduction may occur in the absence of

myelination due to the dense clustering of Nav at nodal-like

domains [9, 10, 154]. Lastly, the action of Nav clustering

along unmyelinated axons may be important for over-

coming axonal branch point failures and maintaining

reliable propagation of APs [3]. In this respect, theoretical

modeling calculations predict that high-density sodium

channel clusters could serve as acceleration points [159]

and therefore Nav clustering in the absence of myelination

could be a way of maintaining faithful propagation of the

AP.

Pathologies leading to alterations of Nav clustering

and conduction velocity

Demyelination or alteration of myelin, disruption of para-

nodal junctions or primary nodal impairment, leading to

abnormal ion channel expression and lengthening or dis-

ruption of the node of Ranvier may contribute to altering

the conduction along myelinated axons in several diseases,

including stroke, spinal cord injury, multiple sclerosis

(MS), and Guillain–Barré syndrome (GBS) (for review see,

[109, 160–162]).

Various dysmyelinating mutant animal models such as

Trembler-J mice, characterized by a mutation in the

peripheral myelin protein 22 gene, and Shiverer mice,

which have a disrupted myelin basic protein gene MBP,

have improperly formed and distributed paranodes and

abnormal Nav clusters [81, 163]. Similarly, in demyeli-

nated lesions of MS or experimental autoimmune

encephalomyelitis (EAE), an animal inflammatory model

for MS, a disruption of nodal, paranodal and juxtaparan-

odal domains has been reported, replaced by diffuse

expression of the components of these domains along the

denuded portion of the axon [164–167]. More current is

required to drive depolarization of the axolemma, and this

raises the metabolic cost of maintaining the Na?/K? gra-

dient. Moreover, the failure of Kv1 to be clustered at the

juxtaparanodes or their mislocalization to either the para-

nodes or nodes has an important impact on axonal

conduction [168]. Diffusion of nodal markers is accom-

panied by a switch from the mature Nav1.6 to the immature

Nav1.2 isoform, which could be an adaptive response, since

Nav1.6 might favor axonal damage by inducing persistent

current that will drive the inversion of the Na?/Ca2?

exchanger and subsequent calcium-mediated axonal dam-

age [165]. Altogether these changes can lead to conduction

failures that manifest into substantial neurological deficits

in MS patients (Fig. 1b). Axoglial organization is fully

restored after remyelination, as observed in shadow pla-

ques in tissue taken from MS patients [164]. Furthermore,

clustering of Nav channels has been observed on PLP-

negative (i.e., non-remyelinated) fibers within lesions

undergoing remyelination [164], suggesting that, as

observed for developmental myelination, nodal protein

clustering might precede myelin repair. Although the

mechanisms of axonal domain reassembly during

remyelination are still poorly understood, it can be

hypothesized that, similar to early nodal clustering during

developmental myelination, these clusters may accelerate

conduction velocity before remyelination and therefore

participate in functional recovery. The observation of
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saltatory conduction occurring before remyelination in

axons demyelinated with lysophosphatidylcholine may also

support this hypothesis [169]. A reduction of the internodal

length is observed after remyelination, which may induce

changes in conduction velocity but may also have a neg-

ative impact due to the increase in the energy needed for

AP propagation [109].

Nodal and perinodal proteins are also direct targets of

autoimmune reactions, and autoantibodies or specific T

cells can be detected notably in patients with MS (reviewed

in [160, 161]). These autoantibodies or T cells, adminis-

tered to the animals with EAE, can induce pathogenic

effects such as acute axonal injury [170, 171]. Similarly, in

GBS, an acute autoimmune polyradiculoneuropathy, the

autoimmune processes specifically target gangliosides

(GM1 or GD1a or b) highly enriched at node, which is the

site of primary injury. Autoantibodies to gliomedin, Nfasc

or contactin have also been found in some patients with

GBS. These antibodies can induce lengthening of the nodes

of Ranvier and disruption of their molecular organization

leading to conduction failure probably due to dysfunction

of Nav channels [161].

Axonal degeneration, depending on the specific disorder

and its severity, eventually follows conduction block [162].

Indeed, defects in Na?/K? pump function due to ATP

depletion induce axoplasmic Na? accumulation, which in

turn reverses the Na?/Ca2? exchanger to remove excess

Na?. Consequently, Ca2? accumulation may activate cal-

pain, a protease capable of inducing proteolytic cleavage of

neurofilaments, mitochondrial damage and Wallerian

degeneration [162].

Conclusion

Beyond axon diameter and the presence of a myelin

sheath, Nav channel nodal clustering is also a key pro-

cess regulating AP propagation along axons. Although

the understanding of molecular mechanisms that support

nodes of Ranvier assembly and maintenance in physio-

logical conditions is progressing, some questions remain

to be clarified regarding the diversity of neuronal

responses during development and nodal reassembly

after a lesion. An attractive hypothesis is that nodal-like

cluster formation on unmyelinated axons might be

associated with the need for early establishment of

neuronal connections during development on axons with

long trajectories. Whether nodal-like cluster formation

on unmyelinated fibers will initiate myelination, and

how cross-talk between glial cells and specific neuron

subpopulations regulates axonal transmission, raise an

exciting field of research. Recent findings showing non-

uniform myelin distribution along single axons in the

neocortex of adult mice, underlie differences in myeli-

nation profiles, which is an integral feature of neuronal

identity [151]. This suggests further levels of conduction

velocity regulation and a possible plasticity in network

behavior.
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