274 research outputs found

    Approaching the Heisenberg limit in an atom laser

    Get PDF
    We present experimental and theoretical results showing the improved beam quality and reduced divergence of an atom laser produced by an optical Raman transition, compared to one produced by an rf transition. We show that Raman outcoupling can eliminate the diverging lens effect that the condensate has on the outcoupled atoms. This substantially improves the beam quality of the atom laser, and the improvement may be greater than a factor of 10 for experiments with tight trapping potentials. We show that Raman outcoupling can produce atom lasers whose quality is only limited by the wave function shape of the condensate that produces them, typically a factor of 1.3 above the Heisenberg limit

    Pulsed pumping of a Bose-Einstein condensate

    Full text link
    In this work, we examine a system for coherent transfer of atoms into a Bose-Einstein condensate. We utilize two spatially separate Bose-Einstein condensates in different hyperfine ground states held in the same dc magnetic trap. By means of a pulsed transfer of atoms, we are able to show a clear resonance in the timing of the transfer, both in temperature and number, from which we draw conclusions about the underlying physical process. The results are discussed in the context of the recently demonstrated pumped atom laser.Comment: 5 pages, 5 figures, published in Physical Review

    A multibeam atom laser: coherent atom beam splitting from a single far detuned laser

    Full text link
    We report the experimental realisation of a multibeam atom laser. A single continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via an optical Raman transition. The atom laser is subsequently split into up to five atomic beams with slightly different momenta, resulting in multiple, nearly co-propagating, coherent beams which could be of use in interferometric experiments. The splitting process itself is a novel realization of Bragg diffraction, driven by each of the optical Raman laser beams independently. This presents a significantly simpler implementation of an atomic beam splitter, one of the main elements of coherent atom optics

    Cold atom gravimetry with a Bose-Einstein Condensate

    Full text link
    We present a cold atom gravimeter operating with a sample of Bose-condensed Rubidium-87 atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of 83% at T=3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources, and observe a reduced visibility of 58% for the thermal source. We suspect the loss in visibility is caused partly by wavefront aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely-falling, coherent atomic sources.Comment: 6 pages, 4 figures. Final version, published PR

    Bosenova and three-body loss in a Rb-85 Bose-Einstein condensate

    Full text link
    Collapsing Bose-Einstein condensates are rich and complex quantum systems for which quantitative explanation by simple models has proved elusive. We present new experimental data on the collapse of high density Rb-85 condensates with attractive interactions and find quantitative agreement with the predictions of the Gross-Pitaevskii equation. The collapse data and measurements of the decay of atoms from our condensates allow us to put new limits on the value of the Rb-85 three-body loss coefficient K_3 at small positive and negative scattering lengths.Comment: 6 pages, 5 figure

    A pumped atom laser

    Full text link
    We present the experimental realization of a pumped atom laser. We demonstrate the pumping through measurements of the source and laser-mode atom numbers, making a rate equation study of the pumping process.Comment: Version 2 contains 18 pages and 4 figures. We have significantly rewritten the introduction, as well as including a discussion of Rayleigh and Raman superradiant scattering and how these relate to continuous pumping of an atom laser. Five new references were adde

    Precision atomic gravimeter based on Bragg diffraction

    Get PDF
    We present a precision gravimeter based on coherent Bragg diffraction of freely falling cold atoms. Traditionally, atomic gravimeters have used stimulated Raman transitions to separate clouds in momentum space by driving transitions between two internal atomic states. Bragg interferometers utilize only a single internal state, and can therefore be less susceptible to environmental perturbations. Here we show that atoms extracted from a magneto-optical trap using an accelerating optical lattice are a suitable source for a Bragg atom interferometer, allowing efficient beamsplitting and subsequent separation of momentum states for detection. Despite the inherently multi-state nature of atom diffraction, we are able to build a Mach-Zehnder interferometer using Bragg scattering which achieves a sensitivity to the gravitational acceleration of Δg/g=2.7×109\Delta g/g = 2.7\times10^{-9} with an integration time of 1000s. The device can also be converted to a gravity gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure

    Enduring Mental Health Morbidity and Social Function Impairment in World Trade Center Rescue, Recovery, and Cleanup Workers: The Psychological Dimension of an Environmental Health Disaster

    Get PDF
    Background The World Trade Center (WTC) attacks exposed thousands of workers to hazardous environmental conditions and psychological trauma. In 2002, to assess the health of these workers, Congress directed the National Institute for Occupational Safety and Health to establish the WTC Medical Monitoring and Treatment Program. This program has established a large cohort of WTC rescue, recovery, and cleanup workers. We previously documented extensive pulmonary dysfunction in this cohort related to toxic environmental exposures. Objectives Our objective in this study was to describe mental health outcomes, social function impairment, and psychiatric comorbidity in the WTC worker cohort, as well as perceived symptomatology in workers’ children. Methods Ten to 61 months after the WTC attack, 10,132 WTC workers completed a self-administered mental health questionnaire. Results Of the workers who completd the questionnaire, 11.1% met criteria for probable post-traumatic stress disorder (PTSD), 8.8% met criteria for probable depression, 5.0% met criteria for probable panic disorder, and 62% met criteria for substantial stress reaction. PTSD prevalence was comparable to that seen in returning Afghanistan war veterans and was much higher than in the U.S. general population. Point prevalence declined from 13.5% to 9.7% over the 5 years of observation. Comorbidity was extensive and included extremely high risks for impairment of social function. PTSD was significantly associated with loss of family members and friends, disruption of family, work, and social life, and higher rates of behavioral symptoms in children of workers. Conclusions Working in 9/11 recovery operations is associated with chronic impairment of mental health and social functioning. Psychological distress and psychopathology in WTC workers greatly exceed population norms. Surveillance and treatment programs continue to be needed

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
    corecore