26 research outputs found

    Depth-dependent artifacts resulting from ApRES signal clipping

    Get PDF
    Several autonomous phase-sensitive radio-echo sounders (ApRES) were deployed at Greenland glaciers to investigate ice deformation. Different attenuation settings were tested and it was observed that, in the presence of clipping of the deramped ApRES signal, each setting produced a different result. Specifically, higher levels of clipping associated with lower attenuation produced an apparent linear increase of diurnal vertical cumulative displacement with depth, and obscured the visibility of the basal reflector in the return amplitude. An example with a synthetic deramped signal confirmed that these types of artifacts result from the introduction of harmonics from square-wave-like features introduced by clipping. Apparent linear increase of vertical displacement with depth occurs when the vertical position of a near-surface internal reflector changes in time. Artifacts in the return amplitude may obscure returns from internal reflectors and the basal reflector, making it difficult to detect thickness evolution of the ice and to correctly estimate vertical velocities. Variations in surface melt during ApRES deployments can substantially modulate the received signal strength on short timescales, and we therefore recommend using higher attenuator settings for deployments in such locations

    An Intensive Observation of Calving at Helheim Glacier, East Greenland

    Get PDF
    Calving of glacial ice into the ocean from the Greenland Ice Sheet is an important component of global sea level rise. The calving process itself is relatively poorly observed, understood, and modeled; as such, it represents a bottleneck in improving future global sea level estimates in climate models. We organized a pilot project to observe the calving process at Helheim Glacier in East Greenland in an effort to better understand it. During an intensive one-week survey, we deployed a suite of instrumentation including a terrestrial radar interferometer, GPS receivers, seismometers, tsunameters, and an automated weather station. This effort captured a calving process and measured various glaciological, oceanographic, and atmospheric parameters before, during, and after the event. One outcome of our observations is evidence that the calving process actually consists of a number of discrete events, spread out over time, in this instance over at least two days. This time span has implications for models of the process. Realistic projections of future global sea level will depend on accurate parametrization of calving, which will require more sustained observations

    Multi-year observations of Breiðamerkurjökull, a marine-terminating glacier in southeastern Iceland, using terrestrial radar interferometry

    Get PDF
    Terrestrial radar interferometry (TRI) is a new technique for studying ice motion and volume change of glaciers. TRI is especially useful for temporally and spatially dense measurements of highly dynamic glacial termini. We conducted a TRI survey of Breiðamerkurjökull, a marine-terminating glacier in Iceland, imaging its terminus near the end of the melt season in 2011, 2012 and 2013. The ice velocities were as high as 5 m d−1, with the fastest velocities near the calving front. Retreat of the glacier over the 3 year observation period was accompanied by strong embayment formation. Iceberg tracking with the radar shows high current velocities near the embayment, probably indicating strong meltwater outflow and mixing with relatively warm lagoon water

    Promoting novelty, rigor, and style in energy social science: towards codes of practice for appropriate methods and research design

    Get PDF
    A series of weaknesses in creativity, research design, and quality of writing continue to handicap energy social science. Many studies ask uninteresting research questions, make only marginal contributions, and lack innovative methods or application to theory. Many studies also have no explicit research design, lack rigor, or suffer from mangled structure and poor quality of writing. To help remedy these shortcomings, this Review offers suggestions for how to construct research questions; thoughtfully engage with concepts; state objectives; and appropriately select research methods. Then, the Review offers suggestions for enhancing theoretical, methodological, and empirical novelty. In terms of rigor, codes of practice are presented across seven method categories: experiments, literature reviews, data collection, data analysis, quantitative energy modeling, qualitative analysis, and case studies. We also recommend that researchers beware of hierarchies of evidence utilized in some disciplines, and that researchers place more emphasis on balance and appropriateness in research design. In terms of style, we offer tips regarding macro and microstructure and analysis, as well as coherent writing. Our hope is that this Review will inspire more interesting, robust, multi-method, comparative, interdisciplinary and impactful research that will accelerate the contribution that energy social science can make to both theory and practice

    Review of \u3cem\u3ePainting by Numbers: How to Sharpen Your BS Detector and Smoke Out the Experts \u3c/em\u3e by Jason Makansi

    Get PDF
    Makansi, Jason. 2016. Painting By Numbers: How to Sharpen Your BS Detector and Smoke Out the Experts . Tucson, AZ: Layla Dog Press. 196 pp. ISBN 978-0-9984259-0-0. Jason Makansi’s book, Painting By Numbers: How to Sharpen Your BS Detector and Smoke out the experts, aims to get people to start thinking more about the errors in models and data presented to them on a daily basis. The book is written in a friendly and accessible way without excessive jargon. Throughout the book, Makansi provides the reader with twelve commandments to follow to be able to evaluate questionable claims along with real-world examples of how those commandments were violated. Furthermore, Painting By Numbers presents information that would be highly beneficial to readers that do not work with data or are not familiar with quantitative literacy, making it a good addition to a late high school or early college curriculum

    Modeling Direct Runoff Hydrographs with the Surge Function

    Get PDF
    A surge function is a mathematical function of the form f(x)=axpe-bx. We simplify the surge function by holding p constant at 1 and investigate the simplified form as a potential model to represent the full peak of a stream discharge hydrograph. The previously studied Weibull and gamma distributions are included for comparison. We develop an analysis algorithm which produces the best-fit parameters for every peak for each model function, and we process the data with a MATLAB script that uses spectral analysis to filter year-long, 15-minute, stream-discharge data sets. The filtering is necessary to locate the concave-upward inflection points used to separate the data set into its constituent, individual peaks. The Levenberg-Marquardt algorithm is used to iteratively estimate the unknown parameters for each version of the modeled peak by minimizing the sum of squares of residuals. The results allow goodness-of-fit comparisons between the three model functions, as well as a comparison of peaks at the same gage through the year of record. Application of these methods to five rivers from three distinct hydrologic regions shows that the simple surge function is a special case of the gamma distribution, which is known to be useful as a modeling function for a full-peak hydrograph. The study also confirms that the Weibull distribution produces good fits to 15-minute hydrograph data

    Review of Painting by Numbers: How to Sharpen Your BS Detector and Smoke Out the "Experts" by Jason Makansi

    No full text
    Makansi, Jason. 2016. Painting By Numbers: How to Sharpen Your BS Detector and Smoke Out the "Experts". Tucson, AZ: Layla Dog Press. 196 pp. ISBN 978-0-9984259-0-0. Jason Makansi’s book, Painting By Numbers: How to Sharpen Your BS Detector and Smoke out the "experts," aims to get people to start thinking more about the errors in models and data presented to them on a daily basis. The book is written in a friendly and accessible way without excessive jargon. Throughout the book, Makansi provides the reader with twelve commandments to follow to be able to evaluate questionable claims along with real-world examples of how those commandments were violated. Furthermore, Painting By Numbers presents information that would be highly beneficial to readers that do not work with data or are not familiar with quantitative literacy, making it a good addition to a late high school or early college curriculum

    Glaciological Applications of Terrestrial Radar Interferometry

    Get PDF
    Terrestrial Radar Interferometry (TRI) is a relatively new ground-based technique that combines the precision and spatial resolution of satellite interferometry with the temporal resolution of GPS. Although TRI has been applied to a variety of fields including bridge and landslide monitoring, it is ideal for studies of the highly-dynamic terminal zones of marine-terminating glaciers, some of which are known to have variable velocities related to calving and/or ocean-forced melting. My TRI instrument is the Gamma Portable Radar Interferometer, which operates at 17.2 GHz (1.74 cm wavelength), has two receiving antennas for DEM (digital elevation model) generation, and images the scenes at minute-scale sampling rates. Most of this TRI work has focused on two glaciers: Breiðamerkurjökull in Iceland and Helheim in Greenland. Monitoring the displacement of stationary points suggests velocity measurement uncertainties related to the instrument and atmosphere of less than 0.05 m/d. I show that the rapid sampling rate of the TRI can be used to observe velocity variations at the glacier terminus and assess the impact and spatial distribution of tidal forcing. Additionally, iceberg tracking in the amplitude imagery may provide insight about ocean currents near the terminus

    Développement d’un concept et d’un processus de gestion de l’identité numérique d’un produit en établissement de santé

    No full text
    INTRODUCTIONAu Canada, il existe plus de 22 000 médicaments et plus de 44 000 instruments médicaux1 sous l’égide de la Loi sur les aliments et drogues et de sa réglementation. Avec l’entrée en vigueur du Règlement sur les produits de santé naturels en 2006, on estime qu’il existe en plus des médicaments, de 40 000 à 50 000 produits de santé naturels sur le marché canadien, qui feront potentiellement l’objet d’une évaluation par Santé Canada au cours des prochaines années2. Les professionnels de la santé et les patients doivent composer avec un nombre très élevé et croissant de produits, d’étiquetages et de formats. Le cadre législatif prévoit les modalités entourant l’étiquetage externe pour la vente et l’étiquetage interne pour l’utilisation des médicaments et produits de santé naturels. Toutefois, il n’existe aucune obligation pour le fabricant de rendre disponible aux professionnels de la santé une version électronique standardisée des illustrations des différentes formes d’emballage de ces produits. En dépit de cette réglementation concernant l’étiquetage, certains fabricants commercialisent déjà au Canada des plaquettes alvéolées, dont l’étiquetage n’est pas jugé sécuritaire en établissement de santé3. En vertu des lignes directrices américaines et canadiennes, la prestation sécuritaire de soins repose sur une distribution unitaire des médicaments et des produits de santé naturels en établissement de santé4. Cette distribution unitaire repose sur une capacité d’identifier adéquatement chaque dose de médicament. La vision 2015 de la Société canadienne des pharmaciens d’hôpitaux prévoit que 75% des départements de pharmacie devront offrir une distribution unitaire à plus de 90 % des lits de leur établissement5. L’enquête canadienne sur la pharmacie hospitalière de 2007-2008 révèle que 66% des personnes ayant répondu à l’enquête offre une telle distribution pour une proportion moyenne de 81% des lits de courte durée6. On reconnaît qu’il existe une cinquantaine d’étapes au circuit du médicament en établissements de santé, de l’acquisition du médicament, en passant par la prescription, la validation et la distribution ainsi que l’administration au patient7. Chacune de ces étapes comporte de nombreux risques d’erreur médicamenteuse8. L’Institute for Safe Medication Practices (ISMP), en Etats- Unis, reconnaît 10 éléments clés d’un circuit du médicament sécuritaire, soit l’information sur le patient, l’information sur le médicament, la communication entre professionnels, l’étiquetage et l’emballage, l’entreposage et la standardisation des stocks, l’acquisition, l’utilisation et l’entretien des équipements, l’environnement, la compétence et la formation du personnel, l’instruction donnée au patient, la gestion de la qualité et des risques9. Afin de réduire les risques, on a retenu plusieurs technologies pour assurer une utilisation plus sécuritaire des médicaments (p. ex. prescripteurs électroniques, lecteurs de codes-barres à la pharmacie et au chevet du patient, pompes intelligentes, sélection des médicaments requis à partir de contenants marqués de puces activées par radio-fréquence). La mise en place des éléments clés proposés par ISMP et l’implantation de ces technologies peuvent avoir potentiellement un effet favorable sur la réduction des risques. Toutefois, plusieurs éléments clés démontrent que la disponibilité de l’information tout au long du processus et les communications des professionnels entre eux et des professionnels avec les patients sont très importantes. Créer et gérer une nouvelle base de données comportant des photos, basée sur l’identité numérique des médicaments, peut permettre de disposer d’un outil important. Cet élément est à la base de notre proposition visant à améliorer la qualité du circuit du médicament. La structure de cette nouvelle base de données est dictée par notre concept. Cette nouvelle banque complète efficacement les bases de données patients et médicaments déjà en notre possession et utilisées quotidiennement. À ce jour, l’Association des pharmaciens du Canada (APC) produit et détient une banque de données d’environ 1500 images couleur de médicaments commercialisés au Canada, principalement sous formes orales solides. Les images sont en format JPG (300 × 300 pixels) et sont archivées dans une banque de données contenant le numéro d’identification du médicament (DIN), le nom générique, le nom commercial, la teneur, la forme, la couleur, le contenu des inscriptions sur la forme et le fabricant. Cette banque de données est publiée annuellement en version papier et électronique du Compendium des produits et spécialités. L’APC envisage de rendre disponible cette banque de données à certains utilisateurs, notamment aux établissements de santé. Il semble très clair qu’un groupe canadien doit prendre le leadership afin d’assurer le développement d’une banque d’images complète à l’échelle canadienne. À l’heure actuelle, très peu de données ont été publiées sur l’utilisation d’images de médicaments en pharmacie. Katsuma et coll. ont évalué l’efficacité de l’ajout d’une image imprimée sur le sac de médicaments pour la prévention d’erreurs de distribution et noté un impact favorable sur la détection d’erreurs de distribution10. Fox et coll. rapportent une utilisation d’images dans un cadre pédagogique pour la formation de professionnels11. L’objectif de cet article est de décrire le développement d’un concept et d’un processus de gestion de l’identité numérique d’un produit en établissement de santé
    corecore