399 research outputs found

    Protein transport in intact, purified pea etioplasts

    Get PDF
    We have developed a method to isolate intact, purified pea etioplasts. These etioplasts were capable of recognizing, transporting, and processing the precursor form of the small subunit of the ribulose-1,5-bisphosphate carboxylase, a protein which is not detectable at this developmental stage. Transport of proteins was completely dependent on ATP and could not be substituted for or stimulated by light. The transported precursor protein was processed to its proper molecular weight. The mature form of the small subunit was assembled with the large subunit of the ribulose-1,5-bisphosphate carboxylase already present at this stage to form an oligomer. Protein transport was completely abolished using the phosphatase inhibitor sodium fluoride. This is the first time protein transport has been demonstrated in isolated, purified etioplasts

    The azido[\u3csup\u3e14\u3c/sup\u3eC]atrazine photoaffinity technique labels a 34-kDa protein in Scenedesmus which functions on the oxidizing side of photosystem II

    Get PDF
    We have used azido[14C]atrazine to photoaffinity label thylakoids from wild-type (WT) Scenedesmus and a mutant, LF-1, which is blocked on the oxidizing side of photosystem II (PS II). One protein is labeled in each case, at 34 kDa in the WT and 36 kDa in LF-1. Previous comparison of the WT with LF-1 had been used to assign a PS II donor side function to the 34-kDa protein. These results suggest that this photoaffinity technique does not label the herbicide-binding protein involved in electron transfer on the reducing side of PS II. © 1985

    Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria?

    Get PDF
    Metals are essential for all living organisms and required for fundamental biochemical processes. However, when in excess, metals can turn into highly-toxic agents able to disrupt cell membranes, alter enzymatic activities, and damage DNA. Metal concentrations are therefore tightly controlled inside cells, particularly in cyanobacteria. Cyanobacteria are ecologically relevant prokaryotes that perform oxygenic photosynthesis and can be found in many different marine and freshwater ecosystems, including environments contaminated with heavy metals. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been widely studied in cyanobacteria. So far, most studies have focused on how cells are capable of controlling their internal metal pools, with a strong bias toward the analysis of intracellular processes. Ultrastructure, modulation of physiology, dynamic changes in transcription and protein levels have been studied, but what takes place in the extracellular environment when cells are exposed to an unbalanced metal availability remains largely unknown. The interest in studying the subset of proteins present in the extracellular space has only recently begun and the identification and functional analysis of the cyanobacterial exoproteomes are just emerging. Remarkably, metal-related proteins such as the copper-chaperone CopM or the iron-binding protein FutA2 have already been identified outside the cell. With this perspective, we aim to raise the awareness that metal-resistance mechanisms are not yet fully known and hope to motivate future studies assessing the role of extracellular proteins on bacterial metal homeostasis, with a special focus on cyanobacteria

    Toxins and Secretion Systems of Photorhabdus luminescens

    Get PDF
    Photorhabdus luminescens is a nematode-symbiotic, gram negative, bioluminescent bacterium, belonging to the family of Enterobacteriaceae. Recent studies show the importance of this bacterium as an alternative source of insecticides, as well as an emerging human pathogen. Various toxins have been identified and characterized in this bacterium. These toxins are classified into four major groups: the toxin complexes (Tcs), the Photorhabdus insect related (Pir) proteins, the “makes caterpillars floppy” (Mcf) toxins and the Photorhabdus virulence cassettes (PVC); the mechanisms however of toxin secretion are not fully elucidated. Using bioinformatics analysis and comparison against the components of known secretion systems, multiple copies of components of all known secretion systems, except the ones composing a type IV secretion system, were identified throughout the entire genome of the bacterium. This indicates that Photorhabdus luminescens has all the necessary means for the secretion of virulence factors, thus it is capable of establishing a microbial infection

    Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion

    Get PDF
    Although a large number of potentially secreted proteins can be predicted on the basis of genomic distribution of signal sequence-bearing proteins, protein secretion in Archaea has barely been studied. A proteomic inventory and comparison of the growth medium proteins in three hyperthermoacidophiles, i.e., Sulfolobus solfataricus, S. acidocaldarius and S. tokodaii, indicates that only few proteins are freely secreted into the growth medium and that the majority originates from cell envelope bound forms. In S. acidocaldarius both cell-associated and secreted α-amylase activities are detected. Inactivation of the amyA gene resulted in a complete loss of activity, suggesting that the same protein is responsible for the a-amylase activity at both locations. It is concluded that protein secretion in Sulfolobus is a limited process, and it is suggested that the S-layer may act as a barrier for the free diffusion of folded proteins into the medium

    1H, 13C, 15N backbone resonance assignments of the apo and holo forms of the ABC transporter solute binding protein PiuA from Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a Gram-positive human pathogen that causes millions of infections worldwide with an increasing occurrence of antibiotic resistance. Iron acquisition is essential for its survival and virulence, especially under host-imposed nutritional immunity. S. pneumoniae expresses several ATP-binding cassette (ABC) transporters to facilitate acquisition under iron limitation, including PitABCD, PiaABCD, and PiuBCDA. The substrate specificity of PiuBCDA is not fully established. Herein, we report the backbone 1H, 13C and 15N resonance assignments of the 31 kDa soluble, extracellular domain of the substrate binding protein PiuA in the apo form and in complex with Ga(III) and the catechol siderophore-mimic 4-LICAM. These studies provide valuable information for further functional studies of interactions with other proteins, metals, and small molecules

    RTX proteins: a highly diverse family secreted by a common mechanism

    Get PDF
    Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest
    corecore