94 research outputs found

    Metabolic Signatures Associated with Severity in Hospitalized COVID-19 Patients

    Get PDF
    The clinical evolution of COVID-19 pneumonia is poorly understood. Identifying the metabolic pathways that are altered early with viral infection and their association with disease severity is crucial to understand COVID-19 pathophysiology, and guide clinical decisions. This study aimed at assessing the critical metabolic pathways altered with disease severity in hospitalized COVID-19 patients. Forty-nine hospitalized patients with COVID-19 pneumonia were enrolled in a prospective, observational, single-center study in Barcelona, Spain. Demographic, clinical, and analytical data at admission were registered. Plasma samples were collected within the first 48 h following hospitalization. Patients were stratified based on the severity of their evolution as moderate (N = 13), severe (N = 10), or critical (N = 26). A panel of 221 biomarkers was measured by targeted metabolomics in order to evaluate metabolic changes associated with subsequent disease severity. Our results show that obesity, respiratory rate, blood pressure, and oxygen saturation, as well as some analytical parameters and radiological findings, were all associated with disease severity. Additionally, ceramide metabolism, tryptophan degradation, and reductions in several metabolic reactions involving nicotinamide adenine nucleotide (NAD) at inclusion were significantly associated with respiratory severity and correlated with inflammation. In summary, assessment of the metabolomic profile of COVID-19 patients could assist in disease severity stratification and even in guiding clinical decisions

    Tinkering with the Unbearable Lightness of Being: Meditation, Mind-Body Medicine and Placebo in the Quantum Biology Age

    Get PDF
    There are empirical indications that mind-body therapies have a nonlocal quantum component, in addition to the psychoneuroimmunological pathways that have been the focus of the predominant experimental paradigm.  The discussion below addresses the evidence and proposed theoretical mechanisms supporting this conclusion, and makes the case that there should be a convergence of research agendas between mind-body interventions (including placebo),  photomedicine and quantum biology.  Specifically, the role of endogenously generated biophotons in the regulation of genetic expression and the apparent ability of mental intent to direct biophoton emissions to specifically targeted tissues needs to be further evaluated from the perspective of photobiomodulation mechanisms, with a special focus on the spectroscopy and dosimetry of these emissions. Finally, the possible role of long-term meditation in enhancing quantum biological effects has to be further investigated at the level of cellular and macromolecular remodeling, both in the brain and the body

    GRP78 Knockdown Enhances Apoptosis via the Down-Regulation of Oxidative Stress and Akt Pathway after Epirubicin Treatment in Colon Cancer DLD-1 Cells

    Get PDF
    INTRODUCTION: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3ÎČ, as well as downstream targets of ÎČ-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. CONCLUSIONS: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells

    Induction of ER stress in response to oxygen-glucose deprivation of cortical cultures involves the activation of the PERK and IRE-1 pathways and of caspase-12

    Get PDF
    Disturbance of calcium homeostasis and accumulation of misfolded proteins in the endoplasmic reticulum (ER) are considered contributory components of cell death after ischemia. However, the signal-transducing events that are activated by ER stress after cerebral ischemia are incompletely understood. In this study, we show that caspase-12 and the PERK and IRE pathways are activated following oxygen-glucose deprivation (OGD) of mixed cortical cultures or neonatal hypoxia–ischemia (HI). Activation of PERK led to a transient phosphorylation of eIF2α, an increase in ATF4 levels and the induction of gadd34 (a subunit of an eIF2α-directed phosphatase). Interestingly, the upregulation of ATF4 did not lead to an increase in the levels of CHOP. Additionally, IRE1 activation was mediated by the increase in the processed form of xbp1, which would be responsible for the observed expression of edem2 and the increased levels of the chaperones GRP78 and GRP94. We were also able to detect caspase-12 proteolysis after HI or OGD. Processing of procaspase-12 was mediated by NMDA receptor and calpain activation. Moreover, our data suggest that caspase-12 activation is independent of the unfolded protein response activated by ER stress

    Hyperthermia Induces the ER Stress Pathway

    Get PDF
    The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and other components of the ER stress pathway in cells exposed to 40°C.AD293 cells were exposed to 43°C heat shock to confirm inhibition of the ER stress response genes. Five mammalian cell types, including AD293 cells, were then exposed to 40°C hyperthermia for various time periods and induction of the ER stress pathway was assessed.The inhibition of the ER stress pathway by heat shock (43°C) was confirmed. In contrast cells subjected to more mild temperature elevation (40°C) showed either a partial or full ER stress pathway induction as determined by downstream targets of the three arms of the ER stress pathway as well as a heat shock response. Cells deficient for Perk or Gcn2 exhibit great sensitivity to ER stress induction by hyperthermia.The ER stress pathway is induced partially or fully as a consequence of hyperthermia in parallel with induction of Hsp70. These findings suggest that the ER and cytoplasm of cells contain parallel pathways to coordinately regulate adaptation to febrile hyperthermia associated with disease or infection

    NMDA Receptor Stimulation Induces Reversible Fission of the Neuronal Endoplasmic Reticulum

    Get PDF
    With few exceptions the endoplasmic reticulum (ER) is considered a continuous system of endomembranes within which proteins and ions can move. We have studied dynamic structural changes of the ER in hippocampal neurons in primary culture and organotypic slices. Fluorescence recovery after photobleaching (FRAP) was used to quantify and model ER structural dynamics. Ultrastructure was assessed by electron microscopy. In live cell imaging experiments we found that, under basal conditions, the ER of neuronal soma and dendrites was continuous. The smooth and uninterrupted appearance of the ER changed dramatically after glutamate stimulation. The ER fragmented into isolated vesicles in a rapid fission reaction that occurred prior to overt signs of neuronal damage. ER fission was found to be independent of ER calcium levels. Apart from glutamate, the calcium ionophore ionomycin was able to induce ER fission. The N-methyl, D-aspartate (NMDA) receptor antagonist MK-801 inhibited ER fission induced by glutamate as well as by ionomycin. Fission was not blocked by either ifenprodil or kinase inhibitors. Interestingly, sub-lethal NMDA receptor stimulation caused rapid ER fission followed by fusion. Hence, ER fission is not strictly associated with cellular damage or death. Our results thus demonstrate that neuronal ER structure is dynamically regulated with important consequences for protein mobility and ER luminal calcium tunneling

    Regulating amyloid precursor protein synthesis through an internal ribosomal entry site

    Get PDF
    Expression of amyloid precursor protein (APP) is critical to the etiology of Alzheimer's disease (AD). Consequently, regulating APP expression is one approach to block disease progression. To this end, APP can be targeted at the levels of transcription, translation, and protein stability. Little is currently known about the translation of APP mRNA. Here, we report that endogenous APP mRNA is translated in neural cell lines via an internal ribosome entry site (IRES) located in the 5â€Č-untranslated leader. The functional unit of the APP IRES is located within the 5â€Č 50 nucleotides of the 5â€Č-leader. In addition, we found that the APP IRES is positively regulated by two conditions correlated with AD, increased intracellular iron concentration and ischemia. Interestingly, the enhancement of APP IRES activity is dependent upon de novo transcription. Taken together, our data suggest that internal initiation of translation of the APP mRNA is an important mode for synthesis of APP, a mechanism which is regulated by conditions that also contribute to AD

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Adaptive preconditioning in neurological diseases -­ therapeutic insights from proteostatic perturbations

    Get PDF
    International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including ParkinsonÂŽs disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore