260 research outputs found

    Superfluid Optomechanics: Coupling of a Superfluid to a Superconducting Condensate

    Get PDF
    We investigate the low loss acoustic motion of superfluid 4^4He parametrically coupled to a very low loss, superconducting Nb, TE011_{011} microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detection of a series of acoustic modes with quality factors as high as 71067\cdot 10^6. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching 101110^{11} may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as an ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources

    Ultra-high Q Acoustic Resonance in Superfluid 4He

    Get PDF
    We report the measurement of the acoustic quality factor of a gram-scale, kilo-hertz frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperature between 400mK and 50mK, we observe a T4T^{-4} temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to 1.41081.4\cdot10^8, consistent with the dissipation due to dilute 3^3He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous wave gravitational waves from pulsars, and the probing of possible limits to physical length scales.Comment: 5 pages, 2 figure

    Prospective open-label study of add-on and monotherapy topiramate in civilians with chronic nonhallucinatory posttraumatic stress disorder

    Get PDF
    BACKGROUND: In order to confirm therapeutic effects of topiramate on posttraumatic stress disorder (PTSD) observed in a prior study, a new prospective, open-label study was conducted to examine acute responses in chronic, nonhallucinatory PTSD. METHODS: Thirty-three consecutive newly recruited civilian adult outpatients (mean age 46 years, 85% female) with DSM-IV-diagnosed chronic PTSD, excluding those with concurrent auditory or visual hallucinations, received topiramate either as monotherapy (n = 5) or augmentation (n = 28). The primary measure was a change in the PTSD Checklist-Civilian Version (PCL-C) score from baseline to 4 weeks, with response defined as a ≥ 30% reduction of PTSD symptoms. RESULTS: For those taking the PCL-C at both baseline and week 4 (n = 30), total symptoms declined by 49% at week 4 (paired t-test, P < 0.001) with similar subscale reductions for reexperiencing, avoidance/numbing, and hyperarousal symptoms. The response rate at week 4 was 77%. Age, sex, bipolar comorbidity, age at onset of PTSD, duration of symptoms, severity of baseline PCL-C score, and monotherapy versus add-on medication administration did not predict reduction in PTSD symptoms. Median time to full response was 9 days and median dosage was 50 mg/day. CONCLUSIONS: Promising open-label findings in a new sample converge with findings of a previous study. The use of topiramate for treatment of chronic PTSD, at least in civilians, warrants controlled clinical trials

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Tumor necrosis factor-α-mediated threonine 435 phosphorylation of p65 nuclear factor-κB subunit in endothelial cells induces vasogenic edema and neutrophil infiltration in the rat piriform cortex following status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Status epilepticus (SE) induces severe vasogenic edema in the piriform cortex (PC) accompanied by neuronal and astroglial damages. To elucidate the mechanism of SE-induced vasogenic edema, we investigated the roles of tumor necrosis factor (TNF)-α in blood-brain barrier (BBB) disruption during vasogenic edema and its related events in rat epilepsy models provoked by pilocarpine-induced SE.</p> <p>Methods</p> <p>SE was induced by pilocarpine in rats that were intracerebroventricularly infused with saline-, and soluble TNF p55 receptor (sTNFp55R) prior to SE induction. Thereafter, we performed Fluoro-Jade B staining and immunohistochemical studies for TNF-α and NF-κB subunits.</p> <p>Results</p> <p>Following SE, most activated microglia showed strong TNF-α immunoreactivity. In addition, TNF p75 receptor expression was detected in endothelial cells as well as astrocytes. In addition, only p65-Thr435 phosphorylation was increased in endothelial cells accompanied by SMI-71 expression (an endothelial barrier antigen). Neutralization of TNF-α by soluble TNF p55 receptor (sTNFp55R) infusion attenuated SE-induced vasogenic edema and neuronal damages via inhibition of p65-Thr435 phosphorylation in endothelial cells. Furthermore, sTNFp55R infusion reduced SE-induced neutrophil infiltration in the PC.</p> <p>Conclusion</p> <p>These findings suggest that impairments of endothelial cell functions via TNF-α-mediated p65-Thr 485 NF-κB phosphorylation may be involved in SE-induced vasogenic edema. Subsequently, vasogenic edema results in extensive neutrophil infiltration and neuronal-astroglial loss.</p

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management
    corecore