348 research outputs found

    Core properties of alpha Cen A using asteroseismology

    Full text link
    A set of long and nearly continuous observations of alpha Centauri A should allow us to derive an accurate set of asteroseismic constraints to compare to models, and make inferences on the internal structure of our closest stellar neighbour. We intend to improve the knowledge of the interior of alpha Centauri A by determining the nature of its core. We combined the radial velocity time series obtained in May 2001 with three spectrographs in Chile and Australia: CORALIE, UVES, and UCLES. The resulting combined time series has a length of 12.45 days and contains over 10,000 data points and allows to greatly reduce the daily alias peaks in the power spectral window. We detected 44 frequencies that are in good overall agreement with previous studies, and found that 14 of these show possible rotational splittings. New values for the large and small separations have been derived. A comparison with stellar models indicates that the asteroseismic constraints determined in this study allows us to set an upper limit to the amount of convective-core overshooting needed to model stars of mass and metallicity similar to those of alpha Cen A.Comment: 8 pages, 11 figures, A&A accepte

    Improved stellar parameters of CoRoT-7

    Full text link
    Accurate parameters of the host stars of exoplanets are important for the interpretation of the new planet systems that continue to emerge. The CoRoT satellite recently discovered a transiting rocky planet with a density similar to the inner planets in our solar system, a so-called Super Earth. This planet is orbiting a relatively faint G9V star called CoRoT-7, and we wish to refine its physical properties, which are important for the interpretation of the properties of the planet system. We used spectra from [email protected] and [email protected]. From the analysis of Fe-1 and Fe-2 lines we determine Teff, log g and microturbulence. We use the Balmer lines to constrain Teff and pressure sensitive Mg-1b and Ca lines to constrain log g. From the analysis we find Teff=5250+-60K, log g = 4.47+-0.05, [M/H]=+0.12+-0.06, and vsini = 1.1 km/s. We compared the L/M ratio with isochrones to constrain the evolutionary status. Using the age estimate of 1.2-2.3 Gyr based on stellar activity, we determine the mass and radius 0.91+-0.03 Msun and 0.82+-0.04 Rsun. With these updated constraints we fitted the CoRoT transit light curve for CoRoT-7b. We revise the planet radius to be slightly smaller, R = 1.58+-0.10 Rearth, and the density becomes higher, rho = 7.2+-1.8 g/cm3. The host star CoRoT-7 is a slowly rotating, metal rich, unevolved type G9V star. The star is relatively faint (V=11.7) and its fundamental parameters can only be determined through indirect methods. Our methods rely on detailed spectral analyses that depend on the adopted model atmospheres. From the analysis of spectra of stars with well-known parameters with similar parameters to CoRoT-7 (the Sun and alpha Cen B) we demonstrate that our methods are robust within the claimed uncertainties. Therefore our methods can be reliably used in subsequent analyses of similar exoplanet host stars.Comment: Accepted by A&A; 10 pages; abstract abridged; resolution decreased in Fig.

    A Planet at 5 AU Around 55 Cancri

    Get PDF
    We report precise Doppler shift measurements of 55 Cancri (G8V) obtained from 1989 to 2002 at Lick Observatory. The velocities reveal evidence for an outer planetary companion to 55 Cancri orbiting at 5.5 AU. The velocities also confirm a second, inner planet at 0.11 AU. The outer planet is the first extrasolar planet found that orbits near or beyond the orbit of Jupiter. It was drawn from a sample of ~50 stars observed with sufficient duration and quality to detect a giant planet at 5 AU, implying that such planets are not rare. The properties of this jupiter analog may be compared directly to those of the Jovian planets in our Solar System. Its eccentricity is modest, e=0.16, compared with e=0.05 for both Jupiter and Saturn. Its mass is at least 4.0 jupiter masses (M sin i). The two planets do not perturb each other significantly. Moreover, a third planet of sub-Jupiter mass could easily survive in between these two known planets. Indeed a third periodicity remains in the velocity measurements with P = 44.3 d and a semi-amplitude of 13 m/s. This periodicity is caused either by a third planet at a=0.24 AU or by inhomogeneities on the stellar surface that rotates with period 42 d. The planet interpretation is more likely, as the stellar surface is quiet, exhibiting log(R'_{HK}) = -5.0 and brightness variations less than 1 millimag, and any hypothetical surface inhomogeneity would have to persist in longitude for 14 yr. Even with all three planets, an additional planet of terrestrial--mass could orbit stably at ~1 AU. The star 55 Cancri is apparently a normal, middle-aged main sequence star with a mass of 0.95 solar masses, rich in heavy elements ([Fe/H] = +0.27). This high metallicity raises the issue of the relationship between its age, rotation, and chromosphere.Comment: 47 pages, 4 tables, 12 figures, uses AASTE

    The VAST Survey - I. Companions and the unexpected X-ray detection of B6-A7 stars

    Full text link
    With an adaptive optics imaging survey of 148 B6-A7 stars, we have tested the hypothesis that unresolved lower-mass companions are the source of the unexpected X-ray detections of stars in this spectral type range. The sample is composed of 63 stars detected in X-rays within the ROSAT All-Sky Survey and 85 stars that form a control sample; both subsets have the same restricted distribution of spectral type, age, X-ray sensitivity and separation coverage. A total of 68 companion candidates are resolved with separations ranging from 0.3" to 26.2", with 23 new detections. The multiple star frequency of the X-ray sample based on companions resolved within the ROSAT error ellipse is found to be 43 (+6,-6)%. The corresponding control sample multiple star frequency is three times lower at 12 (+4,-3)% -- a difference of 31\pm7%. These results are presented in the first of a series of papers based on our Volume-limited A-Star (VAST) survey -- a comprehensive study of the multiplicity of A-type stars.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Double-blind test program for astrometric planet detection with Gaia

    Full text link
    We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. 1) Planets with astrometric signatures α3\alpha\simeq 3 times the single-measurement error σψ\sigma_\psi and period P5P\leq 5 yr can be detected reliably, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically 1515%-20%. 3) Over 70% of two-planet systems with well-separated periods in the range 0.2P90.2\leq P\leq 9 yr, 2α/σψ502\leq\alpha/\sigma_\psi\leq 50, and eccentricity e0.6e\leq 0.6 are correctly identified. 4) Favorable orbital configurations have orbital elements measured to better than 10% accuracy >90> 90% of the time, and the value of the mutual inclination angle determined with uncertainties \leq 10^{\degr}. 5) Finally, uncertainties obtained from the fitting procedures are a good estimate of the actual errors. Extrapolating from the present-day statistical properties of the exoplanet sample, the results imply that a Gaia with σψ\sigma_\psi = 8 μ\muas, in its unbiased and complete magnitude-limited census of planetary systems, will measure several thousand giant planets out to 3-4 AUs from stars within 200 pc, and will characterize hundreds of multiple-planet systems, including meaningful coplanarity tests. Finally, we put Gaia into context, identifying several areas of planetary-system science in which Gaia can be expected to have a relevant impact, when combined with data coming from other ongoing and future planet search programs.Comment: 32 pages, 24 figures, 6 tables. Accepted for pubolication in A&

    A catalogue of young runaway Hipparcos stars within 3kpc from the Sun

    Full text link
    Traditionally runaway stars are O and B type stars with large peculiar velocities.We want to extend this definition to young stars (up to ~50 Myr) of any spectral type and identify those present in the Hipparcos catalogue applying different selection criteria such as peculiar space velocities or peculiar one-dimensional velocities. Runaway stars are important to study the evolution of multiple star systems or star clusters as well as to identify origins of neutron stars. We compile distances, proper motions, spectral types, luminosity classes, V magnitudes and B-V colours and utilise evolutionary models from different authors to obtain star ages and study a sample of 7663 young Hipparcos stars within 3 kpc from the Sun. Radial velocities are obtained from the literature. We investigate the distributions of the peculiar spatial velocity, the peculiar radial velocity as well as the peculiar tangential velocity and its one-dimensional components and obtain runaway star probabilities for each star in the sample. In addition, we look for stars that are situated outside any OB association or OB cluster and the Galactic plane as well as stars of which the velocity vector points away from the median velocity vector of neighbouring stars or the surrounding local OB association/ cluster although the absolute velocity might be small. We find a total of 2547 runaway star candidates (with a contamination of normal Population I stars of 20 per cent at most). Thus, after subtraction of those 20 per cent, the runaway frequency among young stars is about 27 per cent. We compile a catalogue of runaway stars which will be available via VizieR.Comment: 12 pages, 8 figures, 7 tables, accepted for publication in MNRAS old version replaced due to change of the title after journal proof-readin

    VLT multi-object spectroscopy of 33 eclipsing binaries in the Small Magellanic Cloud. New distance and depth of the SMC, and a record-breaking apsidal motion

    Full text link
    Aim: Our purpose is to provide reliable stellar parameters for a significant sample of eclipsing binaries, which are representative of a whole dwarf and metal-poor galaxy. We also aim at providing a new estimate of the mean distance to the SMC and of its depth along the line of sight for the observed field of view. Method: We use radial velocity curves obtained with the ESO FLAMES facility at the VLT and light curves from the OGLE-II photometric survey. The radial velocities were obtained by least-squares fits of the observed spectra to synthetic ones, excluding the hydrogen Balmer lines. Results: Our sample contains 23 detached, 9 semi-detached and 1 overcontact systems. Most detached systems have properties consistent with stellar evolution calculations from single-star models at the standard SMC metallicity Z = 0.004, though they tend to be slightly overluminous. The few exceptions are probably due to third light contribution or insufficient signal-to-noise ratio. The mass ratios are consistent with a flat distribution, both for detached and semi-detached/contact binaries. A mass-luminosity relation valid from ~4 to ~18 Msol is derived. The uncertainties are in the +-2 to +-11% range for the masses, in the +-2 to +-5% range for the radii and in the +-1 to +-6% range for the effective temperatures. The average distance modulus is 19.11+-0.03 (66.4+-0.9 kpc). The moduli derived from the V and from the I data are consistent within 0.01 mag. The 2-sigma depth of the SMC is, for our field, of 0.25 mag or 7.6 kpc under the assumption of a gaussian distribution of stars along the line of sight. Three systems show significant apsidal motion, one of them with an apsidal period of 7.6 years, the shortest known to date for a detached system with main sequence stars.Comment: 61 pages, 41 figures; accepted for publication in Astronomy & Astrophysic

    Magnetic field measurements and wind-line variability of OB-type stars

    Get PDF
    Context. The first magnetic fields in O- and B-type stars that do not belong to the Bp-star class, have been discovered. The cyclic UV wind-line variability, which has been observed in a significant fraction of early-type stars, is likely to be related to such magnetic fields. Aims. We attempt to improve our understanding of massive-star magnetic fields, and observe twenty-five carefully-selected, OB-type stars. Methods. Of these stars we obtain 136 magnetic field strength measurements. We present the UV wind-line variability of all selected targets and summarise spectropolarimetric observations acquired using the MUSICOS spectropolarimeter, mounted at the TBL, Pic du Midi, between December 1998 and November 2004. From the average Stokes I and V line profiles, derived using the LSD method, we measure the magnetic field strengths, radial velocities, and first moment of the line profiles. Results. No significant magnetic field is detected in any OB-type star that we observed. Typical 1{\sigma} errors are between 15 and 200 G. A possible magnetic-field detection for the O9V star 10 Lac remains uncertain, because the field measurements depend critically on the fringe- effect correction in the Stokes V spectra. We find excess emission in UV-wind lines, centred about the rest wavelength, to be a new indirect indicator of the presence of a magnetic field in early B-type stars. The most promising candidates to host magnetic fields are the B-type stars {\delta} Cet and 6 Cep, and a number of O stars. Conclusions. Although some O and B stars have strong dipolar field, which cause periodic variability in the UV wind-lines, such strong fields are not widespread. If the variability observed in the UV wind-lines of OB stars is generally caused by surface magnetic fields, these fields are either weak (<~few hundred G) or localised.Comment: A&A publishe

    The Alpha Centauri Binary System: Atmospheric Parameters and Element Abundances

    Full text link
    The alpha Centauri binary system, owing to its duplicity, proximity and brightness, and its components' likeness to the Sun, is a fundamental calibrating object for the theory of stellar structure and evolution and the determination of stellar atmospheric parameters. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. We report a new spectroscopic analysis of both components of the alpha Centauri binary system and compare published analyses of the system. The analysis is differential with respect to the Sun, based on high-quality spectra, and employed spectroscopic and photometric methods to obtain as many independent Teff determinations as possible. The atmospheric parameters are also checked for consistency against the results of the dynamical analysis and the positions of the components in a theoretical HR diagram. We discuss possible origins of discrepancies, concluding that the presence of NLTE effects is a probable candidate, but we note that there is as yet no consensus on the existence and cause of an offset between the spectroscopic and photometric Teff scales of cool dwarfs. The spectroscopic surface gravities also agree with those derived from directly measured masses and radii. The abundance pattern can be deemed normal in the context of recent data on metal-rich stars. The position of alpha Cen A in an up-to-date theoretical evolutionary diagrams yields a good match of the evolutionary mass and age with those from the dynamical solution and seismology.Comment: 17 pages, 10 figures, accepted by A&A. Replacing the older version with this new, refereed, one. Main modifications concern an updated discussion of the impact of systematic offsets between different temperature scales and non-LTE effects on the determination of abundances and atmospheric parameters. The abstract is abridge

    Accurate fundamental parameters for 23 bright solar-type stars

    Full text link
    We combine results from interferometry, asteroseismology and spectroscopy to determine accurate fundamental parameters of 23 bright solar-type stars, from spectral type F5 to K2 and luminosity classes III to V. For some stars we can use direct techniques to determine the mass, radius, luminosity and effective temperature, and we compare with indirect methods that rely on photometric calibrations or spectroscopic analyses. We use the asteroseismic information available in the literature to infer an indirect mass with an accuracy of 4-15 percent. From indirect methods we determine luminosity and radius to 3 percent. For Teff we find a slight offset of -40+-20 K between the spectroscopic method and the direct method, meaning the spectroscopic temperatures are too high. From the spectroscopic analysis we determine the detailed chemical composition for 13 elements, including Li, C and O. We find no significant offset between the spectroscopic surface gravity and the value from combining asteroseismology with radius estimates. From the spectroscopy we also determine vsini and we present a new calibration of macro- and microturbulence. From the comparison between the results from the direct and spectroscopic methods we claim that we can determine Teff, log g, and [Fe/H] with absolute accuracies of 80 K, 0.08 dex, and 0.07 dex. The indirect methods are important to obtain reliable estimates of the fundamental parameters of relatively faint stars when interferometry cannot be used. Our study is the first to compare direct and indirect methods for a large sample of stars, and we conclude that indirect methods are valid, although slight corrections may be needed.Comment: Accepted by MNRAS. Abstract abridge
    corecore