219 research outputs found

    Computed tomography segmental calcium score (SCS) to predict stenosis severity of calcified coronary lesions

    Get PDF
    To estimate the probability of ≥50 % coronary stenoses based on computed tomography (CT) segmental calcium score (SCS) and clinical factors. The Institutional Review Board approved the study. A training sample of 201 patients underwent CT calcium scoring and conventional coronary angiography (CCA). All patients consented to undergo CT before CCA after being informed of the additional radiation dose. SCS and calcification morphology were assessed in individual coronary segments. We explored the predictive value of patient’s symptoms, clinical history, SCS and calcification morphology. We developed a prediction model in the training sample based on these variables then tested it in an independent test sample. The odds ratio (OR) for ≥50 % coronary stenosis was 1.8-fold greater (p = 0.006) in patients with typical chest pain, twofold (p = 0.014) greater in patients with acute coronary syndromes, twofold greater (p < 0.001) in patients with prior myocardial infarction. Spotty calcifications had an OR for ≥50 % stenosis 2.3-fold (p < 0.001) greater than the absence of calcifications, wide calcifications 2.7-fold (p < 0.001) greater, diffuse calcifications 4.6-fold (p < 0.001) greater. In middle segments, each unit of SCS had an OR 1.2-fold (p < 0.001) greater than in distal segments; in proximal segments the OR was 1.1-fold greater (p = 0.021). The ROC curve area of the prediction model was 0.795 (0.95 confidence interval 0.602–0.843). Validation in a test sample of 201 independent patients showed consistent diagnostic performance. In conjunction with calcification morphology, anatomical location, patient’s symptoms and clinical history, SCS can be helpful to estimate the probability of ≥50 % coronary stenosis

    Factors associated with recurrence and survival length following relapse in patients with neuroblastoma

    Get PDF
    Background: Despite therapeutic advances, survival following relapse for neuroblastoma patients remains poor. We investigated clinical and biological factors associated with length of progression-free and overall survival following relapse in UK neuroblastoma patients. Methods: All cases of relapsed neuroblastoma, diagnosed during 1990-2010, were identified from four Paediatric Oncology principal treatment centres. Kaplan-Meier and Cox regression analyses were used to calculate post-relapse overall survival (PROS), post-relapse progression-free survival (PRPFS) between relapse and further progression, and to investigate influencing factors. Results: One hundred eighty-nine cases were identified from case notes, 159 (84.0%) high risk and 17 (9.0%), unresectable, MYCN non-amplified (non-MNA) intermediate risk (IR). For high-risk patients diagnosed >2000, median PROS was 8.4 months (interquartile range (IQR)=3.0-17.4) and median PRPFS was 4.7 months (IQR=2.1-7.1). For IR, unresectable non-MNA patients, median PROS was 11.8 months (IQR 9.0-51.6) and 5-year PROS was 24% (95% CI 7-45%). MYCN amplified (MNA) disease and bone marrow metastases at diagnosis were independently associated with worse PROS for high-risk cases. Eighty percent of high-risk relapses occurred within 2 years of diagnosis compared with 50% of unresectable non-MNA IR disease. Conclusions: Patients with relapsed HR neuroblastomas should be treatment stratified according to MYCN status and PRPFS should be the primary endpoint in early phase clinical trials. The failure to salvage the majority of IR neuroblastoma is concerning, supporting investigation of intensification of upfront treatment regimens in this group to determine whether their use would diminish likelihood of relapse

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Völkisch und sozial? : Neonazistische Agitation gegen die neue EU-Freizügigkeit für Arbeitnehmerinnen

    Get PDF
    Wnt/β-catenin signalling pathway is crucial for the formation of many tissues and organs during development. In recent years, this pathway has also been found to regulate the biology of stem cells in the intestine and probably in other organs in adult life. Abnormal activation of Wnt/β-catenin signalling, which controls the expression of a high number of genes, is critical for the initiation and progression of most colorectal cancers. In line with this, the gene expression signature induced by activation of the Wnt/β-catenin pathway defines the intestinal stem cells present at the bottom of the crypts and also colon cancer stem cells. This supports the importance of inhibitors of the Wnt/β-catenin pathway as potential agents in colorectal cancer therapy. However, the complexity, wide activity in the organism modulating the biology of several cell types, and characteristics of this pathway have delayed the identification of suitable targets and so, the development of such inhibitors that are only now reaching the clinic.Peer reviewe

    Determinants of the urinary and serum metabolome in children from six European populations

    Get PDF
    Background Environment and diet in early life can affect development and health throughout the life course. Metabolic phenotyping of urine and serum represents a complementary systems-wide approach to elucidate environment–health interactions. However, large-scale metabolome studies in children combining analyses of these biological fluids are lacking. Here, we sought to characterise the major determinants of the child metabolome and to define metabolite associations with age, sex, BMI and dietary habits in European children, by exploiting a unique biobank established as part of the Human Early-Life Exposome project (http://www.projecthelix.eu). Methods Metabolic phenotypes of matched urine and serum samples from 1192 children (aged 6–11) recruited from birth cohorts in six European countries were measured using high-throughput 1H nuclear magnetic resonance (NMR) spectroscopy and a targeted LC-MS/MS metabolomic assay (Biocrates AbsoluteIDQ p180 kit). Results We identified both urinary and serum creatinine to be positively associated with age. Metabolic associations to BMI z-score included a novel association with urinary 4-deoxyerythronic acid in addition to valine, serum carnitine, short-chain acylcarnitines (C3, C5), glutamate, BCAAs, lysophosphatidylcholines (lysoPC a C14:0, lysoPC a C16:1, lysoPC a C18:1, lysoPC a C18:2) and sphingolipids (SM C16:0, SM C16:1, SM C18:1). Dietary-metabolite associations included urinary creatine and serum phosphatidylcholines (4) with meat intake, serum phosphatidylcholines (12) with fish, urinary hippurate with vegetables, and urinary proline betaine and hippurate with fruit intake. Population-specific variance (age, sex, BMI, ethnicity, dietary and country of origin) was better captured in the serum than in the urine profile; these factors explained a median of 9.0% variance amongst serum metabolites versus a median of 5.1% amongst urinary metabolites. Metabolic pathway correlations were identified, and concentrations of corresponding metabolites were significantly correlated (r > 0.18) between urine and serum. Conclusions We have established a pan-European reference metabolome for urine and serum of healthy children and gathered critical resources not previously available for future investigations into the influence of the metabolome on child health. The six European cohort populations studied share common metabolic associations with age, sex, BMI z-score and main dietary habits. Furthermore, we have identified a novel metabolic association between threonine catabolism and BMI of children

    HIV Replication Enhances Production of Free Fatty Acids, Low Density Lipoproteins and Many Key Proteins Involved in Lipid Metabolism: A Proteomics Study

    Get PDF
    BACKGROUND: HIV-infected patients develop multiple metabolic abnormalities including insulin resistance, lipodystrophy and dyslipidemia. Although progression of these disorders has been associated with the use of various protease inhibitors and other antiretroviral drugs, HIV-infected individuals who have not received these treatments also develop lipid abnormalities albeit to a lesser extent. How HIV alters lipid metabolism in an infected cell and what molecular changes are affected through protein interaction pathways are not well-understood. RESULTS: Since many genetic, epigenetic, dietary and other factors influence lipid metabolism in vivo, we have chosen to study genome-wide changes in the proteomes of a human T-cell line before and after HIV infection in order to circumvent computational problems associated with multiple variables. Four separate experiments were conducted including one that compared 14 different time points over a period of >3 months. By subtractive analyses of protein profiles overtime, several hundred differentially expressed proteins were identified in HIV-infected cells by mass spectrometry and each protein was scrutinized for its biological functions by using various bioinformatics programs. Herein, we report 18 HIV-modulated proteins and their interaction pathways that enhance fatty acid synthesis, increase low density lipoproteins (triglycerides), dysregulate lipid transport, oxidize lipids, and alter cellular lipid metabolism. CONCLUSIONS: We conclude that HIV replication alone (i.e. without any influence of antiviral drugs, or other human genetic factors), can induce novel cellular enzymes and proteins that are significantly associated with biologically relevant processes involved in lipid synthesis, transport and metabolism (p = <0.0002-0.01). Translational and clinical studies on the newly discovered proteins may now shed light on how some of these proteins may be useful for early diagnosis of individuals who might be at high risk for developing lipid-related disorders. The target proteins could then be used for future studies in the development of inhibitors for preventing lipid-metabolic anomalies. This is the first direct evidence that HIV-modulates production of proteins that are significantly involved in disrupting the normal lipid-metabolic pathways

    Astrophysics with the Laser Interferometer Space Antenna

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic
    corecore