255 research outputs found

    Differentially Testing Soundness and Precision of Program Analyzers

    Full text link
    In the last decades, numerous program analyzers have been developed both by academia and industry. Despite their abundance however, there is currently no systematic way of comparing the effectiveness of different analyzers on arbitrary code. In this paper, we present the first automated technique for differentially testing soundness and precision of program analyzers. We used our technique to compare six mature, state-of-the art analyzers on tens of thousands of automatically generated benchmarks. Our technique detected soundness and precision issues in most analyzers, and we evaluated the implications of these issues to both designers and users of program analyzers

    The role of soil community biodiversity in insect biodiversity

    Full text link
    1. This study demonstrates that feedback loops between plants and insects contribute to both plant and insect diversity. Synthesis of several studies reveals that both bottom-up and top-down forces are important for plant and insect communities.2. Feedback loops between plants and soil organisms contribute to plant and soil diversity. An analysis of multiple systems reveals that pathogens, mutualists, and a wide variety of soil fauna directly influence, and are influenced by, plant diversity.3. The connection of plant–insect and soil–plant feedback loops leads to the maintenance of all three groups, and the maintenance of these feedback loops crucially affects insect diversity. Examples of the influence of soil community diversity on insect diversity, and the influence of insect diversity on soil community diversity, as well as feedbacks through all three trophic levels are provided.4. Finally, means of conserving and restoring soil communities to influence the conservation and restoration of insect communities are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78730/1/j.1752-4598.2010.00086.x.pd

    Convex polyhedral abstractions, specialisation and property-based predicate splitting in Horn clause verification

    Get PDF
    We present an approach to constrained Horn clause (CHC) verification combining three techniques: abstract interpretation over a domain of convex polyhedra, specialisation of the constraints in CHCs using abstract interpretation of query-answer transformed clauses, and refinement by splitting predicates. The purpose of the work is to investigate how analysis and transformation tools developed for constraint logic programs (CLP) can be applied to the Horn clause verification problem. Abstract interpretation over convex polyhedra is capable of deriving sophisticated invariants and when used in conjunction with specialisation for propagating constraints it can frequently solve challenging verification problems. This is a contribution in itself, but refinement is needed when it fails, and the question of how to refine convex polyhedral analyses has not been studied much. We present a refinement technique based on interpolants derived from a counterexample trace; these are used to drive a property-based specialisation that splits predicates, leading in turn to more precise convex polyhedral analyses. The process of specialisation, analysis and splitting can be repeated, in a manner similar to the CEGAR and iterative specialisation approaches.Comment: In Proceedings HCVS 2014, arXiv:1412.082

    Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid

    Get PDF
    The majority of studies exploring interactions between above- and below-ground biota have been focused on the effects of root-associated organisms on foliar herbivorous insects. This study examined the effects of foliar herbivory by Pieris brassicae L. (Lepidoptera: Pieridae) on the performance of the root herbivore Delia radicum L. (Diptera: Anthomyiidae) and its parasitoid Trybliographa rapae (Westwood) (Hymenoptera: Figitidae), mediated through a shared host plant Brassica nigra L. (Brassicaceae). In the presence of foliar herbivory, the survival of D. radicum and T. rapae decreased significantly by more than 50%. In addition, newly emerged adults of both root herbivores and parasitoids were significantly smaller on plants that had been exposed to foliar herbivory than on control plants. To determine what factor(s) may have accounted for the observed results, we examined the effects of foliar herbivory on root quantity and quality. No significant differences in root biomass were found between plants with and without shoot herbivore damage. Moreover, concentrations of nitrogen in root tissues were also unaffected by shoot damage by P. brassicae larvae. However, higher levels of indole glucosinolates were measured in roots of plants exposed to foliar herbivory, suggesting that the development of the root herbivore and its parasitoid may be, at least partly, negatively affected by increased levels of these allelochemicals in root tissues. Our results show that foliar herbivores can affect the development not only of root-feeding insects but also their natural enemies. We argue that such indirect interactions between above- and below-ground biota may play an important role in the structuring and functioning of communities

    A Multiclass Radiomics Method-Based WHO Severity Scale for Improving COVID-19 Patient Assessment and Disease Characterization From CT Scans.

    Get PDF
    OBJECTIVES The aim of this study was to evaluate the severity of COVID-19 patients' disease by comparing a multiclass lung lesion model to a single-class lung lesion model and radiologists' assessments in chest computed tomography scans. MATERIALS AND METHODS The proposed method, AssessNet-19, was developed in 2 stages in this retrospective study. Four COVID-19-induced tissue lesions were manually segmented to train a 2D-U-Net network for a multiclass segmentation task followed by extensive extraction of radiomic features from the lung lesions. LASSO regression was used to reduce the feature set, and the XGBoost algorithm was trained to classify disease severity based on the World Health Organization Clinical Progression Scale. The model was evaluated using 2 multicenter cohorts: a development cohort of 145 COVID-19-positive patients from 3 centers to train and test the severity prediction model using manually segmented lung lesions. In addition, an evaluation set of 90 COVID-19-positive patients was collected from 2 centers to evaluate AssessNet-19 in a fully automated fashion. RESULTS AssessNet-19 achieved an F1-score of 0.76 ± 0.02 for severity classification in the evaluation set, which was superior to the 3 expert thoracic radiologists (F1 = 0.63 ± 0.02) and the single-class lesion segmentation model (F1 = 0.64 ± 0.02). In addition, AssessNet-19 automated multiclass lesion segmentation obtained a mean Dice score of 0.70 for ground-glass opacity, 0.68 for consolidation, 0.65 for pleural effusion, and 0.30 for band-like structures compared with ground truth. Moreover, it achieved a high agreement with radiologists for quantifying disease extent with Cohen κ of 0.94, 0.92, and 0.95. CONCLUSIONS A novel artificial intelligence multiclass radiomics model including 4 lung lesions to assess disease severity based on the World Health Organization Clinical Progression Scale more accurately determines the severity of COVID-19 patients than a single-class model and radiologists' assessment

    Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    Get PDF
    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground–belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant–soil–vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground–belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground–belowground interactions for small-scale plant community composition

    Arbuscular Mycorrhizal Fungi and Plant Chemical Defence : Effects of Colonisation on Aboveground and Belowground Metabolomes

    Get PDF
    Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms

    T Cell Activation and Senescence Predict Subclinical Carotid Artery Disease in HIV-Infected Women

    Get PDF
    Background. Individuals infected with human immunodeficiency virus (HIV) have increased risk of cardiovascular events. It is unknown whether T cell activation and senescence, 2 immunologic sequelae of HIV infection, are associated with vascular disease among HIV-infected adults

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods
    corecore