517 research outputs found
Minimal Supersymmetric Pati-Salam Theory: Determination of Physical Scales
We systematically study the minimal supersymmetric Pati-Salam theory, paying
special attention to the unification constraints. We find that the SU(4)_c
scale M_c and the Left-Right scale M_R lie in the range 10^{10} GeV < M_c <
10^{14} GeV, 10^{3} GeV < M_R <10^{10} GeV (with single-step breaking at
10^{10} GeV), giving a potentially accessible scale of parity breaking. The
theory includes the possibility of having doubly-charged supermultiplets at the
supersymmetry breaking scale; color octet states with mass of order M_R^2/M_c;
magnetic monopoles of intermediate mass that do not conflict with cosmology,
and a 'clean' (type I) form for the see-saw mechanism of neutrino mass.Comment: 5 page
Top-squark searches at the Tevatron in models of low-energy supersymmetry breaking
We study the production and decays of top squarks (stops) at the Tevatron
collider in models of low-energy supersymmetry breaking. We consider the case
where the lightest Standard Model (SM) superpartner is a light neutralino that
predominantly decays into a photon and a light gravitino. Considering the
lighter stop to be the next-to-lightest Standard Model superpartner, we analyze
stop signatures associated with jets, photons and missing energy, which lead to
signals naturally larger than the associated SM backgrounds. We consider both
2-body and 3-body decays of the top squarks and show that the reach of the
Tevatron can be significantly larger than that expected within either the
standard supergravity models or models of low-energy supersymmetry breaking in
which the stop is the lightest SM superpartner. For a modest projection of the
final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are
accessible at the Tevatron collider in both 2-body and 3-body decay modes. We
also consider the production and decay of ten degenerate squarks that are the
supersymmetric partners of the five light quarks. In this case we find that
common squark masses up to 360 GeV are easily accessible at the Tevatron
collider, and that the reach increases further if the gluino is light.Comment: 32 pages, 9 figures; references adde
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Dark matter and Colliders searches in the MSSM
We study the complementarity between dark matter experiments (direct
detection and indirect detections) and accelerator facilities (the CERN LHC and
a TeV Linear Collider) in the framework of the
constrained Minimal Supersymmetric Standard Model (MSSM). We show how
non--universality in the scalar and gaugino sectors can affect the experimental
prospects to discover the supersymmetric particles. The future experiments will
cover a large part of the parameter space of the MSSM favored by WMAP
constraint on the relic density, but there still exist some regions beyond
reach for some extreme (fine tuned) values of the supersymmetric parameters.
Whereas the Focus Point region characterized by heavy scalars will be easily
probed by experiments searching for dark matter, the regions with heavy
gauginos and light sfermions will be accessible more easily by collider
experiments. More informations on both supersymmetry and astrophysics
parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde
Electroproduction and Hadroproduction of Light Gluinos
In a class of supergravity models, the gluino and photino are massless at
tree level and receive small masses through radiative corrections. In such
models, one expects a gluino-gluon bound state, the , to have a mass of
between 1.0 and 2.2 GeV and a lifetime between and
seconds. Applying peturbative QCD methods (whose validity we discuss), we
calculate the production cross sections of 's in , , ,
and collisions. Signatures are also discussed.Comment: 10 pages, latex, 6 figures uuencoded, figures also available via
anonymous ftp to ftp://physics.wm.edu/pub/gluinofig.p
The Fluorescence Detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a hybrid detector for ultra-high energy
cosmic rays. It combines a surface array to measure secondary particles at
ground level together with a fluorescence detector to measure the development
of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen
fluorescence caused by charged particles of cosmic ray air showers. In this
paper we describe the components of the fluorescence detector including its
optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the
monitoring of the detector. Finally, we evaluate the detector performance and
precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics
Research Section
Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory
We present the results of searches for dipolar-type anisotropies in different
energy ranges above eV with the surface detector array of
the Pierre Auger Observatory, reporting on both the phase and the amplitude
measurements of the first harmonic modulation in the right-ascension
distribution. Upper limits on the amplitudes are obtained, which provide the
most stringent bounds at present, being below 2% at 99% for EeV
energies. We also compare our results to those of previous experiments as well
as with some theoretical expectations.Comment: 28 pages, 11 figure
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data
- …
