1,429 research outputs found

    Genomic duplication and translocation of reactivation transactivator and bZIP-homolog genes is a conserved event in alcelaphine herpesvirus 1.

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces malignant catarrhal fever (MCF), a fatal lymphoproliferative disease of ruminants, including cattle. The strain C500 has been cloned as an infectious, pathogenic bacterial artificial chromosome (BAC) that is used to study MCF. Although AlHV-1 infection can be established in cell culture, multiple passages in vitro cause a loss of virulence associated with rearrangements of the viral genome. Here, sequencing of the BAC clone showed that the long unique region (LUR) of the genome is nearly identical to that of the previously sequenced strain from which the BAC was derived, and identified the duplication and translocation of a region from within LUR, containing the entire coding sequences of ORF50-encoding reactivation transactivator Rta and A6-encoding bZIP protein genes. The duplicated region was further located to a position within the terminal repeat (TR) and its deletion resulted in lower ORF50 expression levels and reduced viral fitness. Finally, the presence of a similar but not identical duplication and translocation containing both genes was found in AlHV-1 strain WC11. These results indicate that selection pressure for enhanced viral fitness may drive the duplication of ORF50 and A6 in AlHV-1.Peer reviewe

    Alcelaphine herpesvirus 1 genes A7 and A8 regulate viral spread and are essential for malignant catarrhal fever

    Get PDF
    Alcelaphine herpesvirus 1 (AlHV-1) is a gammaherpesvirus that is carried asymptomatically by wildebeest. Upon cross-species transmission to other ruminants, including domestic cattle, AlHV-1 induces malignant catarrhal fever (MCF), which is a fatal lymphoproliferative disease resulting from proliferation and uncontrolled activation of latently infected CD8+ T cells. Two laboratory strains of AlHV-1 are used commonly in research: C500, which is pathogenic, and WC11, which has been attenuated by long-term maintenance in cell culture. The published genome sequence of a WC11 seed stock from a German laboratory revealed the deletion of two major regions. The sequence of a WC11 seed stock used in our laboratory also bears these deletions and, in addition, the duplication of an internal sequence in the terminal region. The larger of the two deletions has resulted in the absence of gene A7 and a large portion of gene A8. These genes are positional orthologs of the Epstein-Barr virus genes encoding envelope glycoproteins gp42 and gp350, respectively, which are involved in viral propagation and switching of cell tropism. To investigate the degree to which the absence of A7 and A8 participates in WC11 attenuation, recombinant viruses lacking these individual functions were generated in C500. Using bovine nasal turbinate and embryonic lung cell lines, increased cell-free viral propagation and impaired syncytia formation were observed in the absence of A7, whereas cell-free viral spread was inhibited in the absence of A8. Therefore, A7 appears to be involved in cell-to-cell viral spread, and A8 in viral cell-free propagation. Finally, infection of rabbits with either mutant did not induce the signs of MCF or the expansion of infected CD8+ T cells. These results demonstrate that A7 and A8 are both essential for regulating viral spread and suggest that AlHV-1 requires both genes to efficiently spread in vivo and reach CD8+ T lymphocytes and induce MCF

    Fungal diversity regulates plant-soil feedbacks in temperate grassland

    Get PDF
    Feedbacks between plants and soil microbial communities play an important role in vegetation dynamics, but the underlying mechanisms remain unresolved. Here, we show that the diversity of putative pathogenic, mycorrhizal, and saprotrophic fungi is a primary regulator of plant-soil feedbacks across a broad range of temperate grassland plant species. We show that plant species with resource-acquisitive traits, such as high shoot nitrogen concentrations and thin roots, attract diverse communities of putative fungal pathogens and specialist saprotrophs, and a lower diversity of mycorrhizal fungi, resulting in strong plant growth suppression on soil occupied by the same species. Moreover, soil properties modulate feedbacks with fertile soils, promoting antagonistic relationships between soil fungi and plants. This study advances our capacity to predict plant-soil feedbacks and vegetation dynamics by revealing fundamental links between soil properties, plant resource acquisition strategies, and the diversity of fungal guilds in soil

    Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions

    Get PDF
    Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3,400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection

    Heterogeneous abnormalities of in-vivo left ventricular calcium influx and function in mouse models of muscular dystrophy cardiomyopathy

    Get PDF
    BACKGROUND: Manganese-enhanced cardiovascular magnetic resonance (MECMR) can non-invasively assess myocardial calcium influx, and calcium levels are known to be elevated in muscular dystrophy cardiomyopathy based on cellular studies. METHODS: Left ventricular functional studies and MECMR were performed in mdx mice (model of Duchenne Muscular Dystrophy, 24 and 40 weeks) and Sgcd−/− mice (Limb Girdle Muscular Dystrophy 2 F, 16 and 32 weeks), compared to wild type controls (C57Bl/10, WT). RESULTS: Both models had left ventricular hypertrophy at the later age compared to WT, though the mdx mice had reduced stroke volumes and the Sgcd−/− mice increased heart rate and cardiac index. Especially at the younger ages, MECMR was significantly elevated in both models (both P<0.05 versus WT). The L-type calcium channel inhibitor diltiazem (5 mg/kg i.p.) significantly reduced MECMR in the mdx mice (P<0.01), though only with a higher dose (10 mg/kg i.p.) in the Sgcd−/− mice (P<0.05). As the Sgcd−/− mice had increased heart rates, to determine the role of heart rate in MECMR we studied the hyperpolarization-activated cyclic nucleotide-gated channel inhibitor ZD 7288 which selectively reduces heart rate. This reduced heart rate and MECMR in all mouse groups. However, when looking at the time course of reduction of MECMR in the Sgcd−/− mice at up to 5 minutes of the manganese infusion when heart rates were matched to the WT mice, MECMR was still significantly elevated in the Sgcd−/− mice (P<0.01) indicating that heart rate alone could not account for all the increased MECMR. CONCLUSIONS: Despite both mouse models exhibiting increased in-vivo calcium influx at an early stage in the development of the cardiomyopathy before left ventricular hypertrophy, there are distinct phenotypical differences between the 2 models in terms of heart rates, hemodynamics and responses to calcium channel inhibitors

    Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt

    Get PDF
    J.C.E. acknowledges a NERC independent research fellowship grant number NE/R014574/1. J.M.W. acknowledges financial contributions made by the Netherlands Organization for Scientific Research (grant 866.15.201) and the Netherlands Earth System Science Center (NESSC).Atmospheric warming is increasing surface melting across the Antarctic Peninsula, with unknown impacts upon glacier dynamics at the ice-bed interface. Using high-resolution satellite-derived ice velocity data, optical satellite imagery and regional climate modelling, we show that drainage of surface meltwater to the bed of outlet glaciers on the Antarctic Peninsula occurs and triggers rapid ice flow accelerations (up to 100% greater than the annual mean). This provides a mechanism for this sector of the Antarctic Ice Sheet to respond rapidly to atmospheric warming. We infer that delivery of water to the bed transiently increases basal water pressure, enhancing basal motion, but efficient evacuation subsequently reduces water pressure causing ice deceleration. Currently, melt events are sporadic, so efficient subglacial drainage cannot be maintained, resulting in multiple short-lived (<6 day) ice flow perturbations. Future increases in meltwater could induce a shift to a glacier dynamic regime characterised by seasonal-scale hydrologically-driven ice flow variations.Publisher PDFPeer reviewe

    The genome of a tortoise herpesvirus (testudinid herpesvirus 3) has a novel structure and contains a large region that is not required for replication in vitro or virulence in vivo

    Get PDF
    Testudinid herpesvirus 3 (TeHV-3) is the causative agent of a lethal disease affecting several tortoise species. The threat that this virus poses to endangered animals is focusing efforts on characterizing its properties, in order to enable the development of prophylactic methods. We have sequenced the genomes of the two most studied TeHV-3 strains (1976 and 4295). TeHV-3 strain 1976 has a novel genome structure and is most closely related to a turtle herpesvirus, thus supporting its classification into genus Scutavirus, subfamily Alphaherpesvirinae, family Herpesviridae. The sequence of strain 1976 also revealed viral counterparts of cellular interleukin-10 and semaphorin, which have not been described previously in members of subfamily Alphaherpesvirinae. TeHV-3 strain 4295 is a mixture of three forms (m1, m2, and M), in which, in comparison to strain 1976, the genomes exhibit large, partially overlapping deletions of 12.5 to 22.4 kb. Viral subclones representing these forms were isolated by limiting dilution, and each replicated in cell culture comparably to strain 1976. With the goal of testing the potential of the three forms as attenuated vaccine candidates, strain 4295 was inoculated intranasally into Hermann's tortoises (Testudo hermanni). All inoculated subjects died, and PCR analyses demonstrated the ability of the m2 and M forms to spread and invade the brain. In contrast, the m1 form was detected in none of the organs tested, suggesting its potential as the basis of an attenuated vaccine candidate. Our findings represent a major step towards characterizing TeHV-3 and developing prophylactic methods against it. IMPORTANCE: Testudinid herpesvirus 3 (TeHV-3) causes a lethal disease in tortoises, several species of which are endangered. We have characterized the viral genome, and used this information to take steps towards developing an attenuated vaccine. We have sequenced the genomes of two strains (1976 and 4295), compared their growth in vitro, and investigated the pathogenesis of strain 4295, which consists of three deletion mutants. The major findings are: (i) TeHV-3 has a novel genome structure; (ii) its closest relative is a turtle herpesvirus; (iii) it contains interleukin-10 and semaphorin genes, the first time these have been reported in an alphaherpesvirus; (iv) a sizeable region of the genome is not required for viral replication in vitro or virulence in vivo; and (v) one of the components of strain 4295, which has a deletion of 22.4 kb, exhibits properties indicating that it may serve as the starting point for an attenuated vaccine

    Cardiogoniometry compared to fractional flow reserve at identifying physiologically significant coronary stenosis: The Cardioflow Study

    Get PDF
    Cardiogoniometry (CGM) is method of 3-dimensional electrocardiographic assessment which has been shown to identify patients with angiographically defined, stable coronary artery disease (CAD). However, angiographic evidence of CAD, does not always correlate to physiologically significant disease. The aim of our study was to assess the ability of CGM to detect physiologically significant coronary stenosis defined by fractional flow reserve (FFR). In a tertiary cardiology centre, elective patients with single vessel CAD were enrolled into a prospective double blinded observational study. A baseline CGM recording was performed at rest. A second CGM recording was performed during the FFR procedure, at the time of adenosine induced maximal hyperaemia. A significant CGM result was defined as an automatically calculated ischaemia score < 0 and a significant FFR ratio was defined as < 0.80. Measures of diagnostic performance (including sensitivity and specificity) were calculated for CGM at rest and during maximal hyperaemia. Forty-five patients were included (aged 61.1 ± 11.0; 60.0% male), of which eighteen (40%) were found to have significant CAD when assessed by FFR. At rest, CGM yielded a sensitivity of 33.3% and specificity of 63.0%. At maximal hyperaemia the sensitivity and specificity of CGM was 71.4 and 50.0% respectively. The diagnostic performance of CGM to detect physiologically significant stable CAD is poor at rest. Although, the diagnostic performance of CGM improves substantially during maximal hyperaemia, it does not reach sufficient levels of accuracy to be used routinely in clinical practice

    Sea level rise from West Antarctic mass loss significantly modified by large snowfall anomalies

    Get PDF
    Mass loss from the West Antarctic Ice Sheet is dominated by glaciers draining into the Amundsen Sea Embayment (ASE), yet the impact of anomalous precipitation on the mass balance of the ASE is poorly known. Here we present a 25-year (1996–2021) record of ASE input-output mass balance and evaluate how two periods of anomalous precipitation affected its sea level contribution. Since 1996, the ASE has lost 3331 ± 424 Gt ice, contributing 9.2 ± 1.2 mm to global sea level. Overall, surface mass balance anomalies contributed little (7.7%) to total mass loss; however, two anomalous precipitation events had larger, albeit short-lived, impacts on rates of mass change. During 2009–2013, persistently low snowfall led to an additional 51 ± 4 Gt yr−1 mass loss in those years (contributing positively to the total loss of 195 ± 4 Gt yr−1). Contrastingly, extreme precipitation in the winters of 2019 and 2020 decreased mass loss by 60 ± 16 Gt yr−1 during those years (contributing negatively to the total loss of 107 ± 15 Gt yr−1). These results emphasise the important impact of extreme snowfall variability on the short-term sea level contribution from West Antarctica

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal
    corecore