79 research outputs found

    Time and space resolution and mixed layer model accuracy

    Get PDF
    The oceanic turbulent boundary layer is a critical region to understand for oceanic and atmospheric prediction. This thesis answers two fundamental questions: (1) what is the response of the ocean mixed layer system to transient forcing at the air sea surface? (2) what is the necessary time and space resolution in an ocean mixed layer model to resolve important transient responses? Beginning with replication of de Szoeke and Rhines' work, additional physical processes were added to include more realistic viscous dissipation and anisotropy in the three-dimensional turbulent kinetic energy (TKE) budget. These refinements resulted in modification of de Szoeke and Rhines' findings. Firstly, TKE unsteadiness is important for a minimum of 10 to the 5th power seconds. Secondly, viscous dissipation should not be approximated as simply proportional to shear production. Thirdly, entrainment shear production remains significant for a minimum of one pendulum-day. The required temporal model resolution is dependent on the phenomena to be studied. This study focused on the diurnal, synoptic, and annual cycles, which the one-hour time step of the Naval Postgraduate School model adequately resolves. The study of spatial resolution showed unexpectedly that model skill was comparable for 1 m, 10 m and even 20 m vertical grid spacinghttp://archive.org/details/timespaceresolut00honeLieutenant, United States NavyApproved for public release; distribution is unlimited

    Unusually High Thermal Conductivity of Carbon Nanotubes

    Full text link
    Combining equilibrium and non-equilibrium molecular dynamics simulations with accurate carbon potentials, we determine the thermal conductivity λ\lambda of carbon nanotubes and its dependence on temperature. Our results suggest an unusually high value λ6,600{\lambda}{\approx}6,600~W/m\cdotK for an isolated (10,10) nanotube at room temperature, comparable to the thermal conductivity of a hypothetical isolated graphene monolayer or diamond. Our results suggest that these high values of λ\lambda are associated with the large phonon mean free paths in these systems; substantially lower values are predicted and observed for the basal plane of bulk graphite.Comment: 4 pages 3 figures (5 postscript files), submitted for publicatio

    Follow-up Plasma Apolipoprotein e Levels In The Australian Imaging, Biomarkers And Lifestyle Flagship Study of Ageing (AIBL) Cohort

    Get PDF
    Introduction: Alzheimer\u27s disease (AD) is a growing socioeconomic problem worldwide. Early diagnosis and prevention of this devastating disease have become a research priority. Consequently, the identification of clinically significant and sensitive blood biomarkers for its early detection is very important. Apolipoprotein E (APOE) is a well-known and established genetic risk factor for late-onset AD; however, the impact of the protein level on AD risk is unclear. We assessed the utility of plasma ApoE protein as a potential biomarker of AD in the large, well-characterised Australian Imaging, Biomarkers and Lifestyle Study of Ageing (AIBL) cohort. Methods: Total plasma ApoE levels were measured at 18-month follow-up using a commercial bead-based enzyme-linked immunosorbent assay: the Luminex xMAP human apolipoprotein kit. ApoE levels were then analysed between clinical classifications (healthy controls, mild cognitive impairment (MCI) and AD) and correlated with the data available from the AIBL cohort, including but not limited to APOE genotype and cerebral amyloid burden. Results: A significant decrease in ApoE levels was found in the AD group compared with the healthy controls. These results validate previously published ApoE protein levels at baseline obtained using different methodology. ApoE protein levels were also significantly affected, depending on APOE genotypes, with ε2/ε2 having the highest protein levels and ε4/ε4 having the lowest. Plasma ApoE levels were significantly negatively correlated with cerebral amyloid burden as measured by neuroimaging. Conclusions: ApoE is decreased in individuals with AD compared with healthy controls at 18-month follow-up, and this trend is consistent with our results published at baseline. The influence of APOE genotype and sex on the protein levels are also explored. It is clear that ApoE is a strong player in the aetiology of this disease at both the protein and genetic levels. © 2015 Gupta et al.; licensee BioMed Central

    Graphene/α\alpha-RuCl3_3: An Emergent 2D Plasmonic Interface

    Full text link
    Work function-mediated charge transfer in graphene/α\alpha-RuCl3_3 heterostructures has been proposed as a strategy for generating highly-doped 2D interfaces. In this geometry, graphene should become sufficiently doped to host surface and edge plasmon-polaritons (SPPs and EPPs, respectively). Characterization of the SPP and EPP behavior as a function of frequency and temperature can be used to simultaneously probe the magnitude of interlayer charge transfer while extracting the optical response of the interfacial doped α\alpha-RuCl3_3. We accomplish this using scanning near-field optical microscopy (SNOM) in conjunction with first-principles DFT calculations. This reveals massive interlayer charge transfer (2.7 ×\times 1013^{13} cm2^{-2}) and enhanced optical conductivity in α\alpha-RuCl3_3 as a result of significant electron doping. Our results provide a general strategy for generating highly-doped plasmonic interfaces in the 2D limit in a scanning probe-accessible geometry without need of an electrostatic gate.Comment: 22 pages, 5 figure

    Coulomb engineering of the bandgap and excitons in two-dimensional materials

    Get PDF
    The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the unusual strength of the Coulomb interaction in these materials and its environmental sensitivity. Here, we show that by engineering the surrounding dielectric environment, one can tune the electronic bandgap and the exciton binding energy in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behaviour to present an in-plane dielectric heterostructure with a spatially dependent bandgap, as an initial step towards the creation of diverse lateral junctions with nanoscale resolution

    Search for microscopic black holes in pp collisions at √s̅ = 7 TeV

    Get PDF
    Peer reviewe

    Alignment of the CMS muon system with cosmic-ray and beam-halo muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions of endcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS muon system with cosmic-ray and beam-halo muons

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS muon system has been aligned using cosmic-ray muons collected in 2008 and beam-halo muons from the 2008 LHC circulating beam tests. After alignment, the resolution of the most sensitive coordinate is 80 microns for the relative positions of superlayers in the same barrel chamber and 270 microns for the relative positions of endcap chambers in the same ring structure. The resolution on the position of the central barrel chambers relative to the tracker is comprised between two extreme estimates, 200 and 700 microns, provided by two complementary studies. With minor modifications, the alignment procedures can be applied using muons from LHC collisions, leading to additional significant improvements.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR(Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore