580 research outputs found

    Development of Time-Stamped Signcryption Scheme and its Application in E-Cash System

    Get PDF
    A signcryption scheme combining public key encryptions and digital signatures in one logical step can simultaneously satisfy the security requirements of confidentiality, integrity, authenticity and non-repudiation and with a cost significantly lower than that required by the traditional "signature followed by encryption" approach. This thesis presents a new generic concept of time-stamped signcryption scheme with designated verifiability. Here an authenticated time-stamp is associated with the signcrypted text which can only be verifiable by a specific person, known as the designated verifier. The time-stamp is provided by a trusted third party, namely, Time Stamping System (TSS). The scheme is proved to be secure, as, no one, not even the signcrypter or TSS can produce a valid signcrypted text on behalf of them. We analyzed the security of the proposed scheme and found that it can withstand some active attacks. This scheme is resistant against both inside and outside attacks. The security of our scheme is based upon the hardness of solving Computational Diffie Hellman Problem (CDH), Discrete Logarithm Problem (DLP) and Integer Factorization Problem (IFP). The proposed scheme is suitable in scenarios such as, on-line patent submission, on-line lottery, e-cash, e-bidding and other e-commerce applications. Also we propose an e-cash system based on our proposed time-stamped signcryption scheme which confirms the notion of e-cash securities like anonymity of the spender, unforgeablity of the digital coin, prevention of double spending

    Image Encryption & Authentication Using Orthogonal Transformation on Residual Number System

    Get PDF
    In every communication channel or methodology now-a-days, there is a necessity of secure transmission from sender to the authentic receiver. Therefore a number of data encryption techniques have come up in recent years for different information transfer systems. We are mainly concerned with the types of data, which are represented and interpreted as images. Several classical image encryption approaches like discrete cosine transform or Fourier transform have been proposed and being used. We propose a new method for encrypting images using an orthogonal transformation, namely, Walsh transformation with a key matrix which together fulfill our purpose of cipher. Throughout our operations on image data, we use modular arithmetic so that computations with the resulting residue number system will become efficient. In this paper, we state the algorithm design steps to calculate key matrix which plays the most vital role in any encryption technique. We also show that the total number of possible combinations of key generation is so high for a common brute force or a hacker that virtually it will be impossible to find the authentic key. Also the encryption approach considers image in a divided matrix domain and finally combines all independent cryptographic operations as encryption is a one-to-one mapping. This takes care of the possibility that if any pixel value is ill-stored or wrongly received at the receiver end, which will not affect the decryption process and the final recovered image will differ by a negligible amount. Though this technique is a very simple one, it is very efficient in terms of authenticity, privacy and integrity

    FLY ASH AS A POTENTIAL SOURCE OF SOIL AMENDMENT IN AGRICULTURE AND A COMPONENT OF INTEGRATED PLANT NUTRIENT SUPPLY SYSTEM

    Get PDF
    ABSTRACT The present study investigates the effect of fly ash amended soil on the growth and photosynthetic pigment content of Capsicum annuum. A pot culture experiment comprising four treatments such as 5%, 10%, 15% and 20% were carried out with a control pot. The different photosynthetic pigments like chlorophyll a, chlorophyll b, total chlorophyll, carotenoid and physical parameters like total length of plant, root length and shoot length were studied on different experimental days, i.e. 10 th day, 20 th day, 30 th day, 40 th day, 50 th day and 60 th day. The different physico-chemical characteristics of soil before and after the experiment were analyzed. Photosynthetic pigments like chlorophyll a, chlorophyll b, total chlorophyll and carotenoid were found to be highest in 5% fly ash amended soil on 40 th days of growth followed by a decline trend. One way ANOVA test for those pigments between different days of growth and also within different fly ash amendment soils showed a significant difference (P < 0.05). Further, the physical parameters like root length, shoot length and total length of the plant were studied on each experimental days. One way ANOVA test for those parameters between different days of growth and also within different fly ash amendment soils were not found to be significant. The change in soil physico-chemical parameter such as pH, conductivity (µs/cm), moisture content (%), OC (g%), OM (g%), N (mg/kg), P (mg/kg), Cu (mg/kg), Zn (mg/kg), Fe (mg/kg), Cr (mg/kg) were also analyzed from each culture pot after the end of the experiment. It was observed that except N, P, K all other parameter have increased with increase in fly ash amendment

    Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications

    Get PDF
    AbstractThe work deals with an environmentally benign process for the synthesis of silver nanoparticle using Butea monosperma bark extract which is used both as a reducing as well as capping agent at room temperature. The reaction mixture turned brownish yellow after about 24h and an intense surface plasmon resonance (SPR) band at around 424nm clearly indicates the formation of silver nanoparticles. Fourier transform-Infrared (FT-IR) spectroscopy showed that the nanoparticles were capped with compounds present in the plant extract. Formation of crystalline fcc silver nanoparticles is analysed by XRD data and the SAED pattern obtained also confirms the crystalline behaviour of the Ag nanoparticles. The size and morphology of these nanoparticles were studied using High Resolution Transmission Electron Microscopy (HRTEM) which showed that the nanoparticles had an average dimension of ∼35nm. A larger DLS data of ∼98nm shows the presence of the stabilizer on the nanoparticles surface. The bio-synthesized silver nanoparticles revealed potent antibacterial activity against human bacteria of both Gram types. In addition these biologically synthesized nanoparticles also proved to exhibit excellent cytotoxic effect on human myeloid leukemia cell line, KG-1A with IC50 value of 11.47μg/mL

    Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage

    Get PDF
    AbstractThe growing need of antimicrobial agent for novel therapies against multi-drug resistant bacteria has drawn researchers to green nanotechnology. Especially, eco-friendly biosynthesis of silver nanoparticles (Ag NPs) has shown its interesting impact against bacterial infection in laboratory research. In this study, a simple method was developed to form Ag NPs at room temperature, bio-reduction of silver ions from silver nitrate salt by leaf extract from Ocimum gratissimum. The Ag NPs appear to be capped with plant proteins, but are otherwise highly crystalline and pure. The Ag NPs have a zeta potential of −15mV, a hydrodynamic diameter of 31nm with polydispersity index of 0.65, and dry sizes of 18±3nm and 16±2nm, based on scanning and transmission electron microscopy respectively. The minimum inhibitory concentration (MIC) of the Ag NPs against a multi-drug resistant Escherichia coli was 4μg/mL and the minimum bactericidal concentration (MBC) was 8μg/mL, while the MIC and MBC against a resistant strain of Staphylococcus aureus were slightly higher at 8μg/mL and 16μg/mL respectively. Further, the Ag NPs inhibited biofilm formation by both Escherichia coli and S. aureus at concentrations similar to the MIC for each strain. Treatment of E. coli and S. aureus with Ag NPs resulted in damage to the surface of the cells and the production of reactive oxygen species. Both mechanisms likely contribute to bacterial cell death. In summary, this new method appears promising for green biosynthesis of pure Ag NPs with potent antimicrobial activity

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    A comprehensive review on heat and mass transfer simulation and measurement module during the baking process

    No full text
    The application of computational fluid dynamics (CFD) for controlling quality boundaries in light of temperature and moisture profiling is detailed in this review. For the mapping of intricate stream design inside the baking oven and its product-based baking interaction, efficient utilization of CFD perspectives can be observed. The most crucial element in baking that affects product quality is temperature. Based on heat transfer, the CFD model proved effective in estimating the product's crumb and crust temperatures. In addition to time and temperature, the position of the dough inside the oven affects the quality of the finished product during baking. CFD demonstrating angles effectively predicts the temperature profiles inside the baked product and henceforth, assists with controlling the extreme quality of the product. Regardless, also demonstrating studies ought to be embraced including mass transport and volume extension during the baking process. A piece of the issues related to moisture and heating measures during exhibiting of bread, bun, and cookies baking process, have been included. This study exhibits CFD to be a significant tool for the simulation of the baking oven and relative expectation of temperature and moisture profiles which eventually impacts starch gelatinization and browning issue during the baking process. The mass transfer during baking and volume expansion of various bakery products can also be modelled using CFD

    Anti-leukemic activity of betulinic acid from bulk to self-assembled structure

    No full text
    The Ziziphus jujuba tree is one of the major sources of betulinic acid (BA). After isolation, the bulk structure of the compound was converted to a self-assembled nanofibers (SA-BA) configuration which showed better anti-leukemic efficacy than its bulk form. After internalization in leukemic cells, SA-BA elevated reactive oxygen species (ROS) and pro-inflammatory cytokine secretion which ultimately activated apoptosis pathway. The SA-BA showed potent ameliorative role against acute chemotherapeutic toxicity induced by doxorubicin in human peripheral blood lymphocytes through the mechanism totally opposite to said pathway. Thus, SA-BA showed cell specific distinct effects. It was also revealed that the SA-BA had potent immunomodulatory affected on T cells and macrophages by polarizing the cytokine balance toward Th1 at a slightly higher dose. SA-BA arrested the growth of in vivo cancer by increasing the CD4 + cells in associated with increased cytotoxic T-cell response. SA-BA was also selectively internalized in folate receptor overexpressing leukemic cells. For this purpose, folic acid (FA) and polyethylene glycol (PEG) were conjugated on the nanostructured of SA-BA. After internalization, the conjugate (FA-PEG-SA-BA) diminished the cellular redox system and generated an excess amount of ROS which induced tumor necrosis factor-alpha-mediated cell death through activation of caspase 8 and 3 cascade system. Throughout all these studies, no toxic effects of the conjugates toward normal cells were observed. Thus, the whole study enlightens the multifunctional role of SA-BA in different aspects of anti-leukemic therapy which may be useful in future treatment policies
    corecore