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ABSTRACT 

   In every communication channel or methodology now-a-days, there is a 

necessity of secure transmission from sender to the authentic receiver. Therefore a 

number of data encryption techniques have come up in recent years for different 

information transfer systems. We are mainly concerned with the types of data, 

which are represented and interpreted as images. Several classical image 

encryption approaches like discrete cosine transform or Fourier transform have 

been proposed and being used. We propose a new method for encrypting images 

using an orthogonal transformation, namely, Walsh transformation with a key 

matrix which together fulfill our purpose of cipher. Throughout our operations on 

image data, we use modular arithmetic so that computations with the resulting 

residue number system will become efficient. In this paper, we state the algorithm 

design steps to calculate key matrix which plays the most vital role in any 

encryption technique. We also show that the total number of possible combinations 

of key generation is so high for a common brute force or a hacker that virtually it 

will be impossible to find the authentic key. Also the encryption approach 

considers image in a divided matrix domain and finally combines all independent 

cryptographic operations as encryption is a one-to-one mapping. This takes care of 

the possibility that if any pixel value is ill-stored or wrongly received at the 

receiver end, which will not affect the decryption process and the final recovered 

image will differ by a negligible amount. Though this technique is a very simple 

one, it is very efficient in terms of authenticity, privacy and integrity. 
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1.1 INTRODUCTION 

                Cryptography, defined as the science and study of secret writing concerns 

the ways in which communications and data can be encoded to prevent disclosure 

of their contents through eavesdropping or message interception, using codes, 

ciphers and other methods, so that only certain people can see the real message. 

Cryptography enables us to store sensitive information or transmit it across 

insecure networks so that it cannot be read by anyone except the intended 

recipient. While cryptography is the science of securing data, Cryptanalysis is the 

science of analyzing and breaking secure communication. A cryptographic 

algorithm, known as the cipher, is a mathematical function used in the encryption 

& decryption process. A cryptographic algorithm works in combination with a key 

to encrypt the message. A cryptographic algorithm with all possible keys and 

protocols is known as a Cryptosystem. 

 

 

 

 

 

 

 

 

 

FIGURE.1.1 General Block Diagram of Cryptosystem 
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 Encryption (sometimes called as encipherment) is the process of 

transforming a piece of information (known as the plaintext) using an algorithm 

(known as the cipher) to make it unreadable to anyone except those possessing 

special knowledge, usually referred to as a key. The output is known as the cipher 

text. The reverse process of transforming cipher text to plaintext is known as 

decryption (sometimes called as decipherment).  

    Cryptographic systems are generally classified along three independent 

dimensions: 

1. Type of operations used for transforming plaintext to cipher text. All 

encryption algorithms are based on two general principles. Those are 

substitution, in which each element in the plain text is mapped into another 

element and transposition in which elements in the plaintext are rearranged. 

The fundamental requirement is that no information be lost. Most systems 

referred to as product systems, involved multiple stages of substitution and 

transposition. 

2. The number of keys used: If sender and receiver use the same key, the 

system is referred to as symmetric, single key or secret key conventional 

encryption. If the sender and the receiver each uses a different key the 

system is referred to as asymmetric, two key, or public-key encryption. 

3. The way in which the plaintext is processed: A block cipher processes the 

input on block of elements at a time, producing an output block for each 

input block. A stream cipher processes the input elements continuously, 

producing output one element at a time, as it goes along. 

1.2 CRYPTOGRAPHIC GOALS 

    There are basically three security goals: confidentiality, integrity and 

availability. They are described as follows. 
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FIGURE 1.2 Taxonomy of Security Goals 

1.2.1 CONFIDENTIALITY 

    Confidentiality is the most common aspect of information security. It is 

not only applies to the storage of information, but also applies to the transmission 

of information. That means we need to conceal it during the transmission. 

1.2.2 INTEGRITY 

    Information needs to be changed constantly. Integrity means that these 

changes need to be done only by authorized entities and through authorized 

mechanism. Integrity violation is not necessarily the result of a malicious act; an 

interruption in the system may also create unwanted changes in the information. 

1.2.3 AVAILABILITY 

    The third component of information security is availability. The 

information created and stored needs to be available to authorized entities. 

Information is useless if it is not available. Information needs to be changed 

constantly, which means it must be accessible to authorized entities. 

1.3 CRYPTOGRAPHIC SERVICES 

   The International Telecommunication Union Telecommunication 

Standardization provides some security services related to the security goals.  

 

 

Confidentiality Integrity Availability 

Security Goals 
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FIGURE 1.3 Taxonomy of security services 

1.3.1 PRIVACY 

    Data confidentiality or privacy is designed to protect data from disclosure 

attack. This service is very broad and encompasses confidentiality of the whole 

message or part of a message and also protection against traffic analysis. That is, it 

is designed to prevent snooping and traffic analysis attacks. Privacy is typically 

achieved using symmetric key ciphers. These algorithms accept a secret key and 

then proceed to encrypt the original message and turn it into cipher text. 

1.3.2 DATA INTEGRITY 

    Data integrity is designed to protect data from modification, insertion and 

deletion. It may protect the whole message or part of a message. Integrity is 

usually accomplished using cryptographic one-way hash functions. These 

functions accept as an input an arbitrary length message and produce a fixed size 

message digest. The message digest, or digest for short, usually ranging in sizes 

from 160 to 512 bits, is meant to be a representative of the message. That is, given 

a message and a matching digest, one could presume that outside the possibility of 

an active attacker the message has been delivered intact. 

1.3.3 AUTHENTICATION 

   Authentication is the property of attributing an identity or representative of 

the integrity of a message. A classic example would be the wax seal applied to 

letters. The mark would typically be hard to forge at the time they were being 

used, and the presence of the unbroken mark would imply the documents were 

authentic. This service provides the authentication of the party at the other end of 

Privacy Data Integrity Authentication Nonrepudiation Access 

Control 

Security Services 
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the line. In connection-oriented communication, it provides authentication of the 

sender or receiver during the connection establishment. In connectionless 

communication, it authenticates the source of the origin of the data.  

1.3.4 NONREPUDIATION 

    Nonrepudiation service protects against the repudiation by either the 

sender or the receiver of the data. More specifically, it is the inability to refute 

responsibility. Nonrepudiation is much like the property of authentication in that 

their implementations often share much of the same primitives. For example, a 

public key signature can be a 

 

 nonrepudiation device if only one specific party has the ability to produce 

signatures. In Nonrepudiation with proof of the origin, the receiver of the data can 

later prove the identity of the sender if denied. In Nonrepudiation with the proof of 

delivery, the sender of the data can later prove that the data were delivered to the 

intended recipient. 

1.3.5 ACCESS CONTROL 

    Access control provides protection against unauthorized access to data.  
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2.1 RESIDUAL NUMBER SYSTEM 

                A Residual Number System represents a large integer using a set of smaller 

integers, so that computation may be performed more efficiently. It relies on 

Chinese Remainder Theorem of modular arithmetic for its operation.  

                A Residue Number System is defined by a set of N integer constants:  

                                              {m1, m2, m3……mN}, referred to as moduli. 

 Let M be the Least Common Multiple of all the mi. Any arbitrary integer X 

smaller than M can be represented in the defined Residue Number System as a set 

of N smaller integers as: {x1, x2, x3...xN} with xi = X mod mi. This relation is called 

an equivalence relation on integers. An equivalence class comprises of those 

integers which have the same remainder when divided by mi. the pairs of integers 

xi and X are said to be equivalent or congruent modulo mi. The set of integers 

satisfying such congruence relations represents the residue class of X to that 

modulus. 

2.2 CHINESE REMAINDER THEOREM 

    Let r and s be positive integers which are relatively prime. Let a and b be 

any two integers. Then there is an integer N such that: 

  N  a (mod r) and N  b (mod s)                                          (2.1) 

Moreover, N is uniquely determined modulo rxs. An equivalent statement is that if 

gcd(r, s) = 1, then every pair of residue classes modulo r and s corresponds to a 

simple residue class modulo rxs.  

The theorem can be generalized as follows: 

Given a set of simultaneous congruences: x   ai (mod mi), for i = 1 to r and for 

which mi are relatively prime. Then the solution to the set of congruences is  

                                        𝑥 ≡ (𝑎1 𝑏1
𝑀

𝑚1
 + … + 𝑎𝑟 𝑏𝑟

𝑀

𝑚𝑟
) (𝑚𝑜𝑑 𝑀)                        (2.2) 
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Where M = m1m2…mr , and the bi are determined form: 

              𝑏𝑖
𝑀

𝑚 𝑖
 ≡ 1 (𝑚𝑜𝑑 𝑚𝑖)                                              (2.3) 

2.3 MODULAR MULTIPLICATIVE INVERSE 

                 Two numbers a and b are multiplicative inverse of eachother if 

a×b  1  (mod  n)                                         (2.4) 

Thus the modular multiplicative inverse of a modulo n is an integer b such that : 

a
-1

  b  (mod  n)                                            (2.5) 

The multiplicative inverse of a modulo n exists iff a and n are coprime, i.e,  

                                                 gcd(a, n) = 1                                                       (2.6) 

 If the modular multiplicative inverse of a modulo n exists, the operation 

of division by a modulo n  can be defined as multiplying by the inverse, which is 

in essence the same concept as division in the field of reals. The modular 

multiplicative inverse can be found out using various techniques, one of the most 

efficient being the Extended Euclidean Algorithm. 

2.4 EXTENDED EUCLIDEAN ALGORITHM 

   The Extended Euclidean Algorithm can find the multiplicative inverse of 

b in Zn when n and b are given and the inverse exists. Let us replace the first 

integer a with n (the modulus). The algorithm can find s and t such that : 

s×n + b×t = gcd(n,b)                                                 (2.7) 

However, if the multiplicative inverse of b exists, then gcd(n,b) = 1. So we have 

now: 

s×n + b×t = 1                                                      (2.8) 
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Now we apply modulo operator to both sides. We will have  

       (s×n + b×t)  mod n = 1 mod n 

                                => [(s×n) mod n] + [(b×t) mod n] = 1 mod n 

  => 0 + [(b×t) mod n] = 1 

                        => (b×t) mod n = 1                                                           (2.9) 

This means that t is the multiplicative inverse of b in Zn. 
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3.1 IMAGE REPRESENTATION 

    All images consist of pixels. These pixels may have values in double or 

byte. An image is represented, for all mathematical purposes, as a matrix. The 

matrix equivalent of an image of size NxM pixels is a NxM matrix, where each 

pixel corresponds to an element of that matrix. This is a two dimensional image. 

For a typical colour image like RGB image, the matrix representation will be three 

dimensional. The additional dimension is for Red or Green or Blue proportions in 

a two dimensional Grayscale image. 

3.2 LINEAR TRANSFORMATION OF MATRIX 

    Linear transformation can otherwise be visualized as a mapping or a 

function. For two vector spaces A and B, a transformation L from A to B is a 

correspondence that maps to each element x in A a unique element y = Lx in B. 

Any transformation L from a vector space A to another vector space B is said to be 

linear, if it satisfies property of additivity, homogeneity and principle of 

superposition.  

    Mathematically,  

    L (x1 + x2) = Lx1 + Lx2      (Additivity)                           (3.1) 

        L (αx) = αLx       (Homogeneity)                              (3.2) 

L (αx1 + βx2) = αLx1 + βLx2      (Superposition)                 (3.3) 

    Symbolically, a linear transformation is represented as: 

L : A       B : x      Lx                                              (3.4) 

3.3 EIGENVALUE CALCULATION 

    Eigenvalues are a special set of scalars associated with a linear system of 

equations (i.e., a matrix equation) that are sometimes also known as characteristic 

roots, characteristic values. If the action of a matrix on a nonzero vector changes 

its magnitude but not its direction, then the vector is called an eigenvector of that 
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matrix. Each eigenvector is multiplied by a scalar, called the eigenvalue 

corresponding to that eigenvector. The eigenspace corresponding to one 

eigenvalue of a given matrix is the set of all eigenvectors of the matrix with that 

eigenvalue. 

    For a square matrix A, if there exists a vector X ϵ R ≠ 0 such that  

AX = λX                                                        (3.5) 

for some scalar λ, then λ is called the eigenvalue and X is the eigenvector of A. 

   Let A be a KxK square matrix.  

A =  

𝑎11 ⋯ 𝑎1𝑘

⋮ ⋱ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑘

                                                      (3.6) 

With eigenvalue λ, the corresponding eigenvector satisfies: 

 

𝑎11 ⋯ 𝑎1𝑘

⋮ ⋱ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑘

 

 
 
 
 
 
𝑥1

.

.

.
𝑥𝑘  

 
 
 
 

 =  𝜆 

 
 
 
 
 
𝑥1

.

.

.
𝑥𝑘  

 
 
 
 

                                              (3.7) 

which is equivalent to the homogeneous system: 

 
𝑎11 −  𝜆 ⋯ 𝑎1𝑘

⋮ ⋱ ⋮
𝑎𝑘1 ⋯ 𝑎𝑘𝑘 −  𝜆 

 

 
 
 
 
 
𝑥1

.

.

.
𝑥𝑘 

 
 
 
 

 =   

 
 
 
 
 
0
0
.
.
0 
 
 
 
 

                                      (3.8) 

which implies:     (A - λ𝐼) X = 0                                                                    (3.9) 

Where I is the identity matrix. 

Solving equation 3.9 we will get all K possible values of 𝜆. 

3.4 ORTHOGONAL TRANSFORMATION 

   Two vectors are orthogonal if they are perpendicular. A linear 

transformation, 

                                                      T : V        V  
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is called an orthogonal linear transformation if it preserves the inner product. That 

is, for all pairs of vectors x and y in the inner product space V, 

                                     < Tx , Ty > = < x , y >                                                   (3.10) 

This means that T preserves the angle between x and y, and that the lengths of Tx 

and x are equal. 

    Hadamard transform represents a symmetric orthogonal transformation 

consisting of number of rows and columns that are powers of 2. It is a generalized 

class of Fourier transform. 

3.4.1 WALSH TRANSFORM 

   This is a special type of orthogonal transformation formed by rearranging 

the rows of Hadamard matrix that performs an orthogonal, symmetric, involutional 

& linear operation on 2
m
 real numbers. 

                 The Walsh transform Wm is a 2
m 

x 2
m 

 matrix, known as the Walsh 

matrix, which  is a specific square matrix, the entries of which are +1 or −1, and 

the property that the dot product of any two distinct rows (or columns) is zero. 

 The Hadamard matrices of dimension 2
k
 for k ∈ N are given by the recursive 

formula: 

H(2
K
) =  

𝐻 2 𝐾−1  𝐻 2 𝐾−1  

𝐻 2 𝐾−1  −𝐻 2 𝐾−1  
                               (3.11) 

For example, 

 H(2
0
) = [1] 

 H(2
1
) =  

1 1
1 −1

  

                            H(2
2
) =  

1    1
1 −1

  1     1
  1  −1

1    1
1 −1

−1 −1
−1   1

  and so on. 
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Now, the Walsh matrix is obtained in such a way that the number of sign changes 

in a row is in increasing order. So, 

W2 =  
1 1
1 −1

  ; 

W4 =  

1      1
1      1

    1     1
 −1  −1

1   −1
1   −1

 −1     1
    1  −1

  ; 

W8 = 

 
 
 
 
 
 
 
1 1
1 1

1     1
1     1

1 1
1 1

−1 −1
−1 −1

1 1
−1 −1

1 1
−1 −1

−1 −1
1 1

1 1
−1 −1

1 −1
1 −1

−1 1
−1 1

1 −1
1 −1

1 −1
1 −1

1 −1
−1 1

−1 1
1 −1

−1 1
   1 −1

−1 1
1 −1 

 
 
 
 
 
 

  and so on. 

Observe here the number of sign-changes in a row is in increasing order, i.e. in the 

first row there is no zero crossing; in the second row, there is one & in the third 

row, there are two zero crossings etc. 

    Having all these mathematical backgrounds, we can compute eigenvalues 

of a symmetric square matrix which will provide us the requisites for the key 

matrix needed for encryption technique. In the next chapter we shall demonstrate 

our encryption algorithm using Walsh transformation and that key matrix. 
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FIGURE 4.1 Flow diagram for encryption technique 

4.1 GENERATION OF KEY MATRIX 

    Key is the essential part of any encryption technique. For encryption of 

images, the key is a matrix. This key matrix is generated from a particular image 

which must be available at the receiver end and may be available publicly.  

    In our proposed encryption technique, first we take a reference image 

from which the key matrix will be generated. This reference image is available 

with the party who is the authentic receiver of our image data. The reference image 

is assumed to be a grayscale image and is represented as a two dimensional matrix. 

For all encryption purposes, the images are assumed to be having equal number of 

rows and columns of pixels, the value of which is always in the form 2
m
. This is 

because of the fact that Walsh transformation can only be applied to matrices 

having 2
m
 number of rows and columns.  

    The following steps are involved while calculating the key matrix. 

1. The reference image we use is of the size 256 x 256 pixels. 

2. Each pixel value is 8-bit binary, i.e. one byte. 

3. We apply modulo 241 operation for our encryption. 

4. If pixel value > 241, it is truncated to 241. 

5. All the 256 rows of the reference matrix are reshaped to 256 x 1 column 

vectors. 

6. The mean vector of all such 256 column vectors is calculated. 

 

Image
Transformation 

matrix
Cipher Image
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7. These column vectors are mean-subtracted and their covariance matrix ∑ is 

computed which will be of dimension 256 x 256. 

8. Now the eigenvalue problem is applied to this covariance matrix to 

calculate its 256 number of eigenvalues and eigenvectors. Out of these 256 

possible eigenvalues, we choose 16 eigenvalues. 

9. A diagonal matrix D is formed with the chosen eigenvalues as its diagonal 

entries. 

10. Clearly, these eigenvalues are floating point numbers on which we can‟t 

directly apply modular operation. Therefore, the matrix D is represented as 

a element-wise division of two matrices Nr and Dr, where Nr and Dr 

represent numerator and denominator values of the elements of matrix D 

respectively. 

11. The inverse of the matrix Dr is calculated on modulo 241. This inverse 

matrix is again element-wise multiplied with the modulo 241 numerator 

matrix to obtain the required key matrix K. Mathematically, 

𝐾 =  𝐷𝑟−1 𝑚𝑜𝑑 241  .∗ 𝑁𝑟(𝑚𝑜𝑑 241)                         (4.1) 

                     This proposed method of key generation is robust and has the obvious 

advantage that in total, 256
16

 possible combinations of keys can be generated. This 

is because we are having 256 numbers of eigenvalues to fill 16 diagonal entries. 

As choosing an eigenvalue is an independent event; so for each diagonal entry we 

get 256 independent options. Therefore, even if the reference image is available 

publicly, it will be virtually impossible to obtain the right key out of such huge 

possible combinations. This directly indicates the efficiency of our encryption 

technique. 

4.2 TRANSFORMATION MATRIX 

                Till now, we have calculated the key matrix K. In our encryption 

technique, we apply the orthogonal transformation on 16 x 16 matrices. For that 

reason, we take the Walsh transformation matrix of order 16, i.e. W16 in modulo 

241 representation. 
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The final transformation matrix which will be used as the cipher, is given by: 

W = W16
T
 K W16                                                     (4.2) 

    The following steps are involved in the generation of the transformation 

matrix. 

1. Walsh matrix is generated, the entries of which are either +1 or -1. 

2. According to the properties of Walsh transform,  

                                       W16
T
 W16 = 16 x Identity matrix                                    (4.3) 

           We consider a normalized Walsh matrix so that the right hand side of 

equation     4.3 contains only the identity matrix. This means an additional 

term 
1

4
 will be multiplied with the original Walsh matrix. 

3. As we apply modulo 241 operation upon the Walsh transformation, +
1

4
 is 

congruent to 181 and − 
1

4
 is congruent to 60. 

4. The final transformation matrix W is calculated as per equation 4.2. 

 4.3 IMAGE ENCRYPTION 

    For encryption of image data the following steps are followed. 

1. The image selected as the message is first scaled to 256 x 256 pixels as we 

are encrypting with this dimension. We can always apply this encryption 

technique for images having dimension of the order 2
m
. 

2. Colour images like RGB are multi dimensional. So we convert such images 

into two dimensional grayscale images.  

3. Now modulo 241 operation is operated on this grayscale image. 

4. The 256 x 256 pixel image is partitioned and 256 number of 16 x 16 

matrices are formed. 

5. After dividing the image into 256 number of 16 x 16 matrices, the 

transformation matrix W is multiplied with these 256 number of matrices to 

form 256 number of cipher image matrices. 



NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA 26 

 

6. These 256 number of cipher matrices are then reassembled to form the 

desired cipher matrix of size 256 x 256. 

7. Finally modulo 241 operation is operated on this cipher matrix. This 

modulo operated cipher matrix is the final cipher text that is to be 

transmitted. 
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5.1 WALSH TRANSFORMATION MATRIX IN MODULO 241 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA 29 

 

 

 

5.2 KEY MATRIX 
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5.3 REFERENCE IMAGE FOR KEY GENERATION 

 

 
FIGURE 5.1 

 

5.4 ENCRYPTION OUTPUTS 

  
5.4.1 IMAGE „A‟ 

 

 
 

FIGURE 5.2 Data Image A 
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FIGURE 5.3 Encrypted Image A 

 

 
 

 

 

FIGURE 5.4 Decrypted Image A 
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 5.4.2 IMAGE „B‟ 

 

FIGURE 5.5 Data Image B 

 

 

FIGURE 5.6 Encrypted Image B 

 



NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA 33 

 

 

 

FIGURE 5.7 Decrypted Image B 

  

 5.4.3 IMAGE „C‟ 

 

FIGURE 5.8 Data Image C 
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FIGURE 5.9 Encrypted Image C 

 

 

FIGURE 5.10 Decrypted Image C 
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6.1 CONCLUSION 

                 The image encryption method stated in this paper has a great advantage 

that once encrypted using orthogonal Walsh transformation in modular residual 

number system, it is very difficult to decrypt. This is because of the fact that the 

key diagonal matrix we have used for encryption has 16 diagonal entries which are 

chosen out of 256 available eigenvalues of the covariance matrix of a reference 

image which means there can be in total 256
16 

possible combinations to look at. So 

even if the reference image is available as public information, this will be virtually 

impossible to calculate the diagonal key matrix to decrypt so that only the genuine 

recipient can decrypt the cipher image successfully. Hence, though this method of 

image encryption looks simple, it is an efficient approach to deal with. 

6.2 FUTURE WORKS 

    So far in our image encryption technique, we have considered images of 

size 2
m
 x 2

m
 only. This approach can be further extended for other image sizes 

upon which orthogonal transformation can be implemented. This will increase the 

flexibility of such encryption method.  

    Orthogonal transformation on residue number system can also be helpful 

in data dimension reduction where a very high dimensional data can effectively be 

reduced to a lower space without much loss of information, thereby eliminating 

any redundancy and increasing computational efficiency. 
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