339 research outputs found

    Environmental Pursuits In Nanomaterial Systems Science With Indian Exemplars

    Get PDF
    The behavior and pattern of NPs of minerals in the evolutionary history of the earth vis – a –vis the environmental context are inquired into, with a riverine system as a model. The study of fractal dimensions of NPs of interest serves as an aid to obtain a comprehensive view of natural NPs in the model system. The present study combines inputs from work done on nanoparticles, derived from the Subanarekha River System and products of base metal mine effluents that are rich in NPs of minerals. The authors believe this study would help to establish certain universalities about NPs and provide an updated framework for understanding the current state of nanomineral science

    The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division

    Get PDF
    A cluster of genes encoded by ORFs Rv0014c-Rv0018c in Mycobacterium tuberculosis encodes candidate cell division proteins RodA and PBPA, a pair of serine/threonine kinases (STPKs), PknA and PknB, and a phosphatase, PstP. The organization of genes encompassing this region is conserved in a large number of mycobacterial species. This study demonstrates that recombinant PBPA of M. tuberculosis binds benzylpenicillin. Knockout of its counterpart in M. smegmatis resulted in hindered growth and defective cell septation. The phenotype of the knockout (PBPA-KO) could be restored to that of the wild-type upon expression of PBPA of M. tuberculosis. PBPA localized to the division site along with newly synthesized peptidoglycan, between segregated nucleoids. In vivo coexpression of PBPA and PknB, in vitro kinase assays and site-specific mutagenesis substantiated the view that PknB phosphorylates PBPA on T362 and T437. A T437A mutant could not complement PBPA-KO. These studies demonstrate for the first time that PBPA, which belongs to a subclass of class B high-molecular-mass PBPs, plays an important role in cell division and cell shape maintenance. Signal transduction mediated by PknB and PstP likely regulates the positioning of this PBP at the septum, thereby regulating septal peptidoglycan biosynthesis

    Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in Mycobacteria

    Get PDF
    Polyphosphate kinase 1 (PPK1) helps bacteria to survive under stress. The ppk1 gene of Mycobacterium tuberculosis was overexpressed in Escherichia coli and characterized. Residues R230 and F176, predicted to be present in the head domain of PPK1, were identified as residues critical for polyphosphate (polyP)-synthesizing ability and dimerization of PPK1. A ppk1 knockout mutant of Mycobacterium smegmatis was compromised in its ability to survive under long-term hypoxia. The transcription of the rel gene and the synthesis of the stringent response regulator ppGpp were impaired in the mutant and restored after complementation with ppk1 of M. tuberculosis, providing evidence that PPK1 is required for the stringent response. We present evidence that PPK1 is likely required for mprAB-sigE-rel signalling. σE regulates the transcription of rel, and we hypothesize that under conditions of stress polyP acts as a preferred donor for MprB-mediated phosphorylation of MprA facilitating transcription of the sigE gene thereby leading finally to the enhancement of the transcription of rel in M. smegmatis and M. tuberculosis. Downregulation of ppk1 led to impaired survival of M. tuberculosis in macrophages. PolyP plays a central role in the stress response of mycobacteria

    EphH, a unique epoxide hydrolase encoded by Rv3338 is involved in the survival of Mycobacterium tuberculosis under in vitro stress and vacuolar pH-induced changes

    Get PDF
    IntroductionMycobacterium tuberculosis (Mtb), one of the deadliest human pathogen, has evolved with different strategies of survival inside the host, leading to a chronic state of infection. Phagosomally residing Mtb encounters a variety of stresses, including increasing acidic pH. To better understand the host-pathogen interaction, it is imperative to identify the role of various genes involved in the survivability of Mtb during acidic pH environment.MethodsBio-informatic and enzymatic analysis were used to identify Mtb gene, Rv3338, as epoxide hydrolase. Subsequently, CRISPRi knockdown strategy was used to decipher its role for Mtb survival during acidic stress, nutrient starvation and inside macrophages. Confocal microscopy was used to analyse its role in subverting phagosomal acidification within macrophage.ResultsThe present work describes the characterization of Rv3338 which was previously known to be associated with the aprABC locus induced while encountering acidic stress within the macrophage. Bio-informatic analysis demonstrated its similarity to epoxide hydrolase, which was confirmed by enzymatic assays, thus, renamed EphH. Subsequently, we have deciphered its indispensable role for Mtb in protection from acidic stress by using the CRISPRi knockdown strategy. Our data demonstrated the pH dependent role of EphH for the survival of Mtb during nutrient starvation and in conferring resistance against elevated endogenous ROS levels during stress environment.ConclusionTo the best of our knowledge, this is the first report of an EH of Mtb as a crucial protein for bacterial fitness inside the host, a phenomenon central to its pathogenesis

    Interaction between FtsZ and FtsW of mycobacterium tuberculosis

    Get PDF
    The recruitment of FtsZ to the septum and its subsequent interaction with other cell division proteins in a spatially and temporally controlled manner are the keys to bacterial cell division. In the present study, we have tested the hypothesis that FtsZ and FtsW of Mycobacterium tuberculosis could be binding partners. Using gel renaturation, pull-down, and solid-phase assays, we confirm that FtsZ and FtsW interact through their C-terminal tails, which carry extensions absent in their Escherichia coli counterparts. Crucial to these interactions is the cluster of aspartate residues Asp367 to Asp370of FtsZ, which most likely interact with a cluster of positively charged residues in the C-terminal tail of FtsW. Mutations of the aspartate residues 367–370 showed that changing three aspartate residues to alanine resulted in complete loss of interaction. This is the first demonstration of the direct interaction between FtsZ and FtsW. We speculate that this interaction between FtsZ and FtsW could serve to anchor FtsZ to the membrane and link septum formation to peptidoglycan synthesis in M. tuberculosis. The findings assume particular significance in view of the global efforts to explore new targets in M. tuberculosis for chemotherapeutic intervention

    Positive feedback and noise activate the stringent response regulator Rel in mycobacteria

    Get PDF
    Phenotypic heterogeneity in an isogenic, microbial population enables a subset of the population to persist under stress. In mycobacteria, stresses like nutrient and oxygen deprivation activate the stress response pathway involving the two-component system MprAB and the sigma factor, SigE. SigE in turn activates the expression of the stringent response regulator, rel. The enzyme polyphosphate kinase 1 (PPK1) regulates this pathway by synthesizing polyphosphate required for the activation of MprB. The precise manner in which only a subpopulation of bacterial cells develops persistence, remains unknown. Rel is required for mycobacterial persistence. Here we show that the distribution of rel expression levels in a growing population of mycobacteria is bimodal with two distinct peaks corresponding to low (L) and high (H) expression states, and further establish that a positive feedback loop involving the mprAB operon along with stochastic gene expression are responsible for the phenotypic heterogeneity. Combining single cell analysis by flow cytometry with theoretical modeling, we observe that during growth, noise-driven transitions take a subpopulation of cells from the L to the H state within a "window of opportunity" in time preceding the stationary phase. We find evidence of hysteresis in the expression of rel in response to changing concentrations of PPK1. Our results provide, for the first time, evidence that bistability and stochastic gene expression could be important for the development of "heterogeneity with an advantage" in mycobacteria.Comment: Accepted for publication in PLoS On

    An Oligopeptide Transporter of Mycobacterium tuberculosis Regulates Cytokine Release and Apoptosis of Infected Macrophages

    Get PDF
    Background: The Mycobacterium tuberculosis genome encodes two peptide transporters encoded by Rv3665c-Rv3662c and Rv1280c-Rv1283c. Both belong to the family of ABC transporters containing two nucleotide-binding subunits, two integral membrane proteins and one substrate-binding polypeptide. However, little is known about their functions in M. tuberculosis. Here we report functional characterization of the Rv1280c-Rv1283c-encoded transporter and its substrate-binding polypeptide OppA(MTB). Methodology/Principal Findings: OppA(MTB) was capable of binding the tripeptide glutathione and the nonapeptide bradykinin, indicative of a somewhat broad substrate specificity. Amino acid residues G109, N110, N230, D494 and F496, situated at the interface between domains I and III of OppA, were required for optimal peptide binding. Complementaton of an oppA knockout mutant of M. smegmatis with OppA(MTB) confirmed the role of this transporter in importing glutathione and the importance of the aforesaid amino acid residues in peptide transport. Interestingly, this transporter regulated the ability of M. tuberculosis to lower glutathione levels in infected compared to uninfected macrophages. This ability was partly offset by inactivation of oppD. Concomitantly, inactivation of oppD was associated with lowered levels of methyl glyoxal in infected macrophages and reduced apoptosis-inducing ability of the mutant. The ability to induce the production of the cytokines IL-1 beta, IL-6 and TNF-alpha was also compromised after inactivation of oppD. Conclusions: Taken together, these studies uncover the novel observations that this peptide transporter modulates the innate immune response of macrophages infected with M. tuberculosis

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    On 17 August 2017, the Advanced LIGO 1 and Virgo 2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system 3 . Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source 4-6 . This sky region was subsequently observed by optical astronomy facilities 7 , resulting in the identification 8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' 14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder' 19 : the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements 20,21 , while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision
    corecore