6 research outputs found

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Fuel temperature and injection pressure influence on the cold start GDI sprays

    No full text
    Cold start in gasoline direct injection engines (GDI) is a critical issue that significantly impacts fuel consumption and emissions. Therefore, it is essential to investigate and improve the spray and air-fuel mixing processes during cold starts. This study employed a complimentary set of optical diagnostic techniques, including line-of-sight(extinction, Schlieren, and long-distance microscopy) and 3D computed tomography (CT), to characterize and understand the cold-start spray dynamics under various fuel temperature and injection pressure conditions. The experiments were conducted in a constant volume spray vessel and the fuel temperature was varied using a coolant circulator, with temperatures reaching as low as -7 °C to simulate cold-start conditions. The cold fuel exhibited longer liquid/vapor penetration lengths compared to hot fuel under low injection pressure conditions. This deterioration in spray characteristics was attributed to the attenuated fuel evaporation and reduced entrainment of ambient air. The 3D spray visualization obtained through the CT algorithm, particularly the cut plane images, revealed that plumes with low fuel temperatures had narrower individual plume widths, resulting in minimized plume-to-plume interaction. Microscopic imaging further confirmed this observation which showed separate plumes in the near-nozzle region for cold fuel conditions. Meanwhile, hot fuel under high injection pressure conditions exhibited complete plume collapsing, leading to a significant amount of liquid fuel remaining in the spray core. The liquid penetration reached 70 mm during the injection period, potentially can cause wall wetting on the piston top or cylinder wall. Based on the experimental findings, this study suggests the application of multiple injections with a moderate level of injection pressure for optimized engine performance and reduced emissions during cold starts

    Understanding partial fuel stratification for low temperature gasoline combustion using large eddy simulations

    No full text
    The development of gasoline compression ignition engines operating in a low temperature combustion mode depends heavily on robust control of the heat release profile. Partial fuel stratification is an effective method for controlling the heat release by creating a stratified mixture prior to autoignition, which can be beneficial for operation across a wide load range. In this study, three-dimensional large eddy simulations were used to model a double direct injection strategy for which 80% of the fuel was injected during the intake stroke, and 20% of the fuel was injected at varying timing during the compression stroke. The simulations replicated a set of experiments performed at Sandia National Laboratories on a 1-L single-cylinder research engine using E10 gasoline (gasoline fuel containing 10% vol. ethanol). The objective of this study is to analyze the effects of the double direct injection strategy on the compositional and thermal stratification of the mixture, and understand the best use of this operating strategy. The modeling results indicated that by retarding the start of the second injection, the mixture stratification increases, which can be used to control the autoignition timing and the combustion phasing. Ignition and CA50 (crank angle of 50% mass fraction burned) are dictated by the mass concentration of the richest zones in the combustion chamber, as well as their location. The richer zones have the lowest temperatures before ignition primarily due to evaporative cooling from direct fuel injection. Overall, this study enhances the understanding of partial fuel stratification that can be used for controlling the heat release in gasoline compression ignition engines

    Understanding partial fuel stratification for low temperature gasoline combustion using large eddy simulations

    No full text
    The development of gasoline compression ignition engines operating in a low temperature combustion mode depends heavily on robust control of the heat release profile. Partial fuel stratification is an effective method for controlling the heat release by creating a stratified mixture prior to autoignition, which can be beneficial for operation across a wide load range. In this study, three-dimensional large eddy simulations were used to model a double direct injection strategy for which 80% of the fuel was injected during the intake stroke, and 20% of the fuel was injected at varying timing during the compression stroke. The simulations replicated a set of experiments performed at Sandia National Laboratories on a 1-L single-cylinder research engine using E10 gasoline (gasoline fuel containing 10% vol. ethanol). The objective of this study is to analyze the effects of the double direct injection strategy on the compositional and thermal stratification of the mixture, and understand the best use of this operating strategy. The modeling results indicated that by retarding the start of the second injection, the mixture stratification increases, which can be used to control the autoignition timing and the combustion phasing. Ignition and CA50 (crank angle of 50% mass fraction burned) are dictated by the mass concentration of the richest zones in the combustion chamber, as well as their location. The richer zones have the lowest temperatures before ignition primarily due to evaporative cooling from direct fuel injection. Overall, this study enhances the understanding of partial fuel stratification that can be used for controlling the heat release in gasoline compression ignition engines

    Modeling of Reactivity Controlled Compression Ignition Combustion Using a Stochastic Reactor Model Coupled with Detailed Chemistry

    No full text
    Advanced combustion concepts such as reactivity controlled compression ignition (RCCI) have been proven to be capable of fundamentally improve the conventional Diesel combustion by mitigating or avoiding the soot-NOx trade-off, while delivering comparable or better thermal efficiency. To further facilitate the development of the RCCI technology, a robust and possibly computationally efficient simulation framework is needed. While many successful studies have been published using 3D-CFD coupled with detailed combustion chemistry solvers, the maturity level of the 0D/1D based software solution offerings is relatively limited. The close interaction between physical and chemical processes challenges the development of predictive numerical tools, particularly when spatial information is not available. The present work discusses a novel stochastic reactor model (SRM) based modeling framework capable of predicting the combustion process and the emission formation in a heavy-duty engine running under RCCI combustion mode. The combination of physical turbulence models, detailed emission formation sub-models and state-of-the-art chemical kinetic mechanisms enables the model to be computationally inexpensive compared to the 3D-CFD approaches. A chemical kinetic mechanism composed of 248 species and 1428 reactions was used to describe the oxidation of gasoline and diesel using a primary reference fuel (PRF) mixture and n-heptane, respectively. The model is compared to operating conditions from a single-cylinder research engine featuring different loads, speeds, EGR and gasoline fuel fractions. The model was found to be capable of reproducing the combustion phasing as well as the emission trends measured on the test bench, at some extent. The proposed modeling approach represents a promising basis towards establishing a comprehensive modeling framework capable of simulating transient operation as well as fuel property sweeps with acceptable accuracy
    corecore