43 research outputs found

    The Distinct Conformational Dynamics of K-Ras and H-Ras A59G

    Get PDF
    Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species

    Real-Space Mesh Techniques in Density Functional Theory

    Full text link
    This review discusses progress in efficient solvers which have as their foundation a representation in real space, either through finite-difference or finite-element formulations. The relationship of real-space approaches to linear-scaling electrostatics and electronic structure methods is first discussed. Then the basic aspects of real-space representations are presented. Multigrid techniques for solving the discretized problems are covered; these numerical schemes allow for highly efficient solution of the grid-based equations. Applications to problems in electrostatics are discussed, in particular numerical solutions of Poisson and Poisson-Boltzmann equations. Next, methods for solving self-consistent eigenvalue problems in real space are presented; these techniques have been extensively applied to solutions of the Hartree-Fock and Kohn-Sham equations of electronic structure, and to eigenvalue problems arising in semiconductor and polymer physics. Finally, real-space methods have found recent application in computations of optical response and excited states in time-dependent density functional theory, and these computational developments are summarized. Multiscale solvers are competitive with the most efficient available plane-wave techniques in terms of the number of self-consistency steps required to reach the ground state, and they require less work in each self-consistency update on a uniform grid. Besides excellent efficiencies, the decided advantages of the real-space multiscale approach are 1) the near-locality of each function update, 2) the ability to handle global eigenfunction constraints and potential updates on coarse levels, and 3) the ability to incorporate adaptive local mesh refinements without loss of optimal multigrid efficiencies.Comment: 70 pages, 11 figures. To be published in Reviews of Modern Physic

    A survey of the parallel performance and accuracy of Poisson solvers for electronic structure calculations

    Get PDF
    arXiv:1211.2092We present an analysis of different methods to calculate the classical electrostatic Hartree potential created by charge distributions. Our goal is to provide the reader with an estimation on the performance - in terms of both numerical complexity and accuracy - of popular Poisson solvers, and to give an intuitive idea on the way these solvers operate. Highly parallelizable routines have been implemented in a first-principle simulation code (Octopus) to be used in our tests, so that reliable conclusions about the capability of methods to tackle large systems in cluster computing can be obtained from our work.Peer Reviewe
    corecore