
A survey of the parallel performance and the

accuracy of Poisson solvers for electronic structure

calculations

Pablo García-Risueño,∗,† Joseba Alberdi-Rodriguez,‡ Micael J. T. Oliveira,¶

Xavier Andrade,§ Michael Pippig,‖ Javier Muguerza,‡ Agustin Arruabarrena,‡ and

Ángel Rubio⊥

Humboldt Universität zu Berlin and CSIC, University of the Basque Country UPV/EHU,

University of Coimbra, Harvard University, Chemnitz University of Technology, and European

Theoretical Spectroscopy Facility and Fritz-Haber Institut (MPG)

E-mail: risueno@physik.hu-berlin.de

Abstract

We present an analysis of different methods to calculate the classical electrostatic Hartree

potential created by charge distributions. Our goal is to provide the reader with an estimation

∗To whom correspondence should be addressed
†Institut für Physik, Humboldt Universität zu Berlin, 12489 Berlin, Germany - Instituto de Química Física Roca-

solano (CSIC), C/ Serrano 119, 28006 Madrid, Spain
‡Dept. of Computer Architecture and Technology, Nano-Bio Spectroscopy Group and European Theoretical Spec-

troscopy Facility, Spanish node, University of the Basque Country UPV/EHU, M. Lardizabal, 1, 20018 Donostia/San
Sebastián, Spain

¶Center for Computational Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
§Dept. of Chemistry and Chemical Biology, Harvard University, 12 Oxford street, Cambridge, MA 02138, USA
‖Dept. of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany
⊥Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility, Spanish node, University of the

Basque Country UPV/EHU, Edif. Joxe Mari Korta, Av. Tolosa 72, 20018 Donostia/San Sebastián, Spain - Centro de
Física de Materiales, University of the Basque Country UPV/EHU, 20018 Donostia/San Sebastián, Spain - Fritz-Haber
Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany

1

ar
X

iv
:1

21
1.

20
92

v2
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

4
N

ov
 2

01
2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36169311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on the performance —in terms of both numerical complexity and accuracy— of popular Pois-

son solvers, and to give an intuitive idea on the way these solvers operate. Highly parallelisable

routines have been implemented in the first-principle simulation code OCTOPUS to be used in

our tests, so that reliable conclusions about the capability of methods to tackle large systems

in cluster computing can be obtained from our work.

Keywords: Hartree potential, charge density, Poisson solver, parallelisation, linear scaling,

fast multipole method, parallel fast Fourier transform, interpolating scaling functions, multi-

grid, conjugate gradients

Contents

1 Introduction 3

2 Theoretical background 4

2.1 Parallel fast Fourier transform (PFFT) . 6

2.2 Fast Fourier transform with interpolating scaling functions (ISF) 10

2.3 Fast multipole method (FMM) . 11

2.4 Conjugate gradients . 15

2.5 Multigrid . 17

3 Methods 21

3.1 Implementation . 21

3.2 Test on high-performance supercomputing facilities 23

4 Results 25

4.1 Accuracy . 25

4.2 Execution time . 27

4.3 Influence of the input parameters . 37

2

5 Conclusions 39

1 Introduction

The electrostatic interaction between charges is one of the most important phenomena of physics

and chemistry, which makes the calculation of the energy and potential associated to a distribution

of charges one of the most common problems in scientific computing. The calculation of potentials

created by pairwise interactions is ubiquitous in atomic and molecular simulations, and also in

fields like quantum chemistry, solid state physics, fluid dynamics, plasma physics, and astronomy,

among others.

In particular, the electrostatic interaction is a key part in the density functional theory (DFT)1,2

and time-dependent density functional theory (TDDFT)3 formulations of quantum mechanics. In

DFT (TDDFT) the many-body Schrödinger equation is replaced by a set of single particle equa-

tions, the Kohn–Sham (time-dependent Kohn–Sham) equations, which include an effective poten-

tial that reproduces the interelectronic interaction. Such effective potential is usually divided into

three terms: Hartree potential, exchange-correlation potential and external potential. The Hartree

term corresponds to the classical electrostatic potential generated by electronic charge distributions

due to the (delocalised) electronic states.

The calculation of the potential associated to a charge distribution is then an important step in

most numerical implementations of DFT. In addition, the calculation of the electrostatic potential

associated to a charge density can appear in other contexts in electronic structure theory, like the ap-

proximation of the exchange term,4–6 or the calculation of integrals that appear in Hartree–Fock7,8

or Casida9 theories. It is understandable then that the calculation of the electrostatic potential has

received much interest in the recent past within the community of electronic structure researchers.

Since at present, the complexity of the problems we want to tackle requires massively parallel

computational platforms,10 every algorithm for a time-consuming task must not only be efficient

in serial, but also needs to keep its efficiency when run in a very large number of parallel processes

3

(approximately 300,000 CPUs). The electrostatic interaction is non-local, and thus the information

corresponding to different points interacting with each other can be stored in different computing

units (processor cores), with a non-negligible time for data-communication among them. This

makes critical the choice of the algorithm for the calculation of the Hartree potential, since as

well as different accuracies, different algorithms also have different efficiencies. Thanks to the

efficiency offered by the current generation of solvers, calculation of the Hartree potential usually

contributes a minor fraction of the computational time of a typical DFT calculation. However,

there are cases where the Poisson solver hinders the numerical performance of electronic structure

calculations. For example, in parallel implementations of DFT it is common to distribute the Kohn–

Sham orbitals between processors;11 for real-time TDDFT in particular, this is a very efficient

strategy.12–14 Nonetheless, since a single Poisson equation needs to be solved independently on

the number of orbitals, the calculation of the Hartree potential becomes an important bottleneck for

an efficient parallelisation14,15 as predicted by Amdahl’s law,16 if it is not optimally parallelised.

The objective of this article is, therefore, to analyse the relative efficiencies and accuracies of

some of the most popular methods to calculate the Hartree potential created by charge distributions.

Our purpose is to provide the reader with estimates on the features of this solvers that make it

possible to choose which of them is the most appropriate for his electronic structure calculations.

We start by giving a brief theoretical introduction to the Poisson equation problem and on

different methods to solve it. Next, we discuss the details of our implementation and the parallel

computers we use. Following, we present the results of our numerical experiments. We finish by

stating our conclusions. More specific derivations and analysis are provided in the supporting info.

2 Theoretical background

In the context of quantum mechanics, the electrons and their electric charge are delocalised over

space forming a continuous charge distribution ρ(rrr). Such a charge density creates an electrostatic

4

potential v(rrr), which is given by17

v(rrr) =
∫

drrr ′
1

4πε0

ρ(rrr ′)
|rrr− rrr ′| , (1)

where ε0 is the electrical permittivity of the vacuum, i.e. 1/4π in atomic units. When consider-

ing the electric interaction in a medium, it is possible to approximate the polarization effects by

replacing ε0 by an effective permittivity, ε . In the context of electronic structure calculations this

effective permittivity is used, for example, in multiscale simulations where part of the system is

approximated by a continuous polarisable medium.18

In 3D, it is simple to show that equation Eq. (1) is equivalent to the Poisson equation19,20

∇2v(rrr)+
ρ(rrr)

ε0
= 0 . (2)

In fact, this equation provides a convenient general expression that is valid for different dimensions

and boundary conditions. For example, to study crystalline systems, usually periodic boundary

conditions are imposed. It is also possible to simulate a molecular system interacting with ideal

metallic surfaces by choosing the appropriate boundary conditions.21,22 Both formulations of the

problem, i.e. equations Eq. (1) and Eq. (2), are quite useful: while some methods to calculate the

Hartree potential are based on the former, others rely on the latter.

In order to numerically calculate the electrostatic potential we need to discretise the problem.

To this end, we use a grid representation, which changes the charge density and the electrostatic

potential to discrete functions, with values defined over a finite number of points distributed over

a uniform mesh. Such an approach is used in many electronic structure codes, even when another

type of discretisation is used for the orbitals. There are several ways to calculate the potential in

a grid-based approach. Probably the simplest method is to approximate equation Eq. (1) as a sum

over grid points; this approximation, however, can produce large errors, and some correction terms

need to be considered (this is discussed in section Section 2.3). Other methods to calculate the

potential on a mesh can be found using Fourier transforms or finite differences and are based on a

5

discretisation of the Poisson equation.

Independently of the method, the direct calculation of the potential would take O(N2) oper-

ations, with N the number of points of our grid. This is prohibitive for systems beyond some

size. Fortunately, there exist a variety of methods that, by exploiting the properties of the problem,

reduce the cost to a linear or quasi-linear dependency. For our survey, we have selected several

parallel implementations of some of the most popular of these methods (parallel fast Fourier trans-

form, interpolating scaling functions, fast multipole method, conjugate gradients, and multigrid).

In the next subsections we introduce them and give a brief account of their theoretical foundations

and properties.

2.1 Parallel fast Fourier transform (PFFT)

The Fourier transform (FT) is a powerful mathematical tool both for analytical and numerical

calculations, and certainly it can be used to calculate the electrostatic potential created by a charge

distribution represented in an equispaced grid by operating as follows. Let f̂ (kkk) be the Fourier

transform of the f (rrr) function, and ĝ−1(rrr) the inverse Fourier transform of the g(kkk) function, with

f and g continuous functions defined in a tridimensional space. By construction, f = f (rrr). The

convolution property of the Fourier transform ensures that f̂−1(f̂ (kkk)
)
(rrr) = f (rrr). If we apply these

equations to equation Eq. (1), we find that

v(rrr) = v̂−1(v̂(kkk)
)
(rrr) =

1
4πε0

v̂−1(ρ̂(kkk)/|kkk|2
)
, (3)

where we have used that the Fourier transform of the function 1/|rrr| is20 ˆ(1/|rrr|)(kkk) = 1/|kkk|2 =

1/(k2
x + k2

y + k2
z).

Since ρ(rrr) is represented in discrete equispaced points (r j,k,l) at the centre of cells whose

volume equals Ω, the Fourier transform of ρ(rrr) (i.e. ρ̂(kkk)) can be calculated using its discrete

6

Fourier transform (i.e., the last term in the next equation):

ρ̂(kkk) := (2π)−3/2
∫

drrr exp(−ikkk · rrr)ρ(rrr) (4)

' (2π)−3/2Ω ∑
j,k,l

ρ(r j,k,l)exp(−i(kx j+ kyk+ kzl)) . (5)

The use of equation Eq. (3) in equation Eq. (3) results in a discretised problem, which requires

the use of a discrete Fourier transform plus an inverse discrete Fourier transform. The expression

of the potential in terms of discrete Fourier transforms makes possible the employ of the efficient

technique FFT23 (see below for details), so the problem can be sovled in O(Nlog2N) steps, N

being the total number of grid points.

It is to be stressed that the use of the FT automatically imposes periodic boundary conditions on

the density, and therefore to the potential. When finite systems are studied some scheme is required

to avoid the interaction between periodic images. The simplest strategy is to increase the size of

the real-space simulation cell and set the charge density to zero in the new points. This moves the

periodic replicas of the density away, thus decreasing their effect on the potential. Another strategy

is to replace the 1/(ε0kkk2) factor of equation Eq. (3), known as the kernel of the Poisson equation,

by a quantity that gives the free space potential in the simulation region. This modified kernel has

been presented in references 24 for molecules, one-dimensional systems, and slabs. This Coulomb

cut-off technique is very efficient and easy to implement. In our PFFT-based solver we combine

the two approaches, doubling the size of the cell and using a modified kernel.20,24 This results in a

potential that accurately reproduces the free space results.

In one dimension, the discrete Fourier transform of a set of n complex numbers fk (fk can be,

for example, the values of ρ in a set of discrete points) is given by

Fl =
n−1

∑
k=0

fk exp
(
−2πi kl

n

)
for l = 0, . . . ,n−1 , (6)

7

with i being the imaginary unit. The inverse discrete Fourier transform is given by

fk =
1
n

n−1

∑
l=0

Fl exp
(
+2πi kl

n

)
for k = 0, . . . ,n−1 . (7)

The definitions above enable computational savings using the fact that both the input and output

data sets (ρ(rrr) and v(rrr)) are real. Thus Fn−l = F∗l , and in one direction we just need to calculate

one half of the n discrete Fourier transforms.

The Poisson problem using equations Eq. (6) and Eq. (7) would require O(N2) arithmetic oper-

ations (with e.g. N = n3), which would not represent any improvement over the cost of evaluating

the potential directly. However, in 1965, J. W. Cooley and J. W. Tukey published an algorithm

called fast Fourier transform (FFT)23 that exploits the special structure of equation Eq. (6) in order

to reduce the arithmetic complexity. The basic idea of the radix-2 Cooley-Tukey FFT is to split a

discrete FT of even size n = 2m into two discrete FTs of half the length; e.g., for l = 0, . . . ,m−1

we have

F2l =
m−1

∑
k=0

fk exp
(
−2πi k2l

n

)
+ fk+m exp

(
−2πi (k+m)2l

n

)

=
m−1

∑
k=0

(fk + fk+m)exp
(
−2πi kl

m

)
; (8)

F2l+1 =
m−1

∑
k=0

fk exp
(
−2πi k(2l+1)

n

)
+ fk+m exp

(
−2πi (k+m)(2l+1)

n

)

=
m−1

∑
k=0

exp
(
−2πi k

n

)
(fk− fk+m)exp

(
−2πi kl

m

)
. (9)

If we assume n to be a power of two, we can apply this splitting recursively log2 n times, which

leads to O(n log2 n) arithmetic operations for the calculation of equation Eq. (6). There exist

analogous splitting for every divisible sizes,25 even for prime sizes.26

In three dimensions a discrete FT of size n1× n2× n3 can be evaluated using 1D FFTs along

each direction, yielding a fast algorithm with arithmetic complexity O(n1n2n3 log(n1n2n3)). In ad-

dition, the one-dimensional decomposition of the 3D-FFT provides a straightforward parallelisa-

8

tion strategy based on a domain decomposition strategy. We now present the two-dimensional data

decomposition that was first proposed by H. Q. Ding et al.27 and later implemented by M. Eleft-

heriou et al.28–30

The starting point is to decompose the input data set along the first two dimensions into equal

blocks of size n1
P1
× n2

P2
× n3 and distribute these blocks on a two-dimensional grid of P1×P2 pro-

cesses. Therefore, each process can perform n1
P1
× n2

P2
one-dimensional FFTs of size n3 locally.

Afterwards, a communication step is performed that redistributes the data along directions 1 and 3

in blocks of size n1
P1
×n2× n3

P2
, such that the 1D-FFT along direction 2 can be performed locally on

each process. Then, a second communication step is performed, that redistributes the data along

direction 2 and 3 in blocks of size n1× n2
P1
× n3

P2
. Now, the 3D-FFT is completed by performing

the 1D-FFTs along direction 1. This algorithm is illustrated in Figure 1. For n1 ≥ n2 ≥ n3 the

two-dimensional data decomposition allows the usage of at most n2×n3 processes.

P2P1

n 2
n 1

n 3
T

P2

P1

n 2n 1

n 3

T

P1

P2
n 2

n 1

n 3

Figure 1: Distribution of a three-dimensional dataset of size n1× n2× n3 = 8× 4× 4 on a two-
dimensional process grid of size P1×P2 = 4×2.

Since it is not trivial to implement an efficient FFT routine in parallel, we rely on optimised

implementations .31–33 Fortunately, several publicly available FFT software libraries are available

that are based on the two-dimensional data decomposition. Among them are the FFT package from

Sandia National Laboratories,34 the P3DFFT software library,35 the 2DECOMP&FFT package,36

and the PFFT software library.31–33 Other efficient implementations exist, but unfortunately they

are not distributed as stand-alone packages.37 Our test runs are implemented with the help of the

PFFT software library,33 which utilises the FFTW38 software package for the one-dimensional

FFTs and the global communication steps. PFFT has a similar performance to the well-known

9

P3DFFT, as well as some user-interface advantages,32 so we choose it for our survey.

2.2 Fast Fourier transform with interpolating scaling functions (ISF)

This a different solver based on the Fourier approach. It was developed by Genovese et al.39

for the BIGDFT code.40 Formally this solver is based on representing the density in a basis of

interpolating scaling functions (ISF) that arise in the context of wavelet theory.41 A representation

of ρ from ρ j,k,l can be efficiently built by using wavelets, and efficient iterative solvers for the

Hartree potential v can be taylored, e.g. from ordinary steepest descent or conjugate gradient

techniques.42 A non-iterative and accurate way to calculate v39 is to use the fast Fourier transform

(FFT) in addition to wavelets. If we represent

ρ(rrr) = ∑
j,k,l

ρ j,k,lφ(x− j)φ(y− k)φ(z− l) , (10)

where rrr = x,y,z and φ are interpolating scaling functions in one dimension, then equation Eq. (1)

becomes

vm,n,o = ∑
j,k,l

ρ j,k,lK(j,m;k,n; l,o) , (11)

where

K(j,m;k,n; l,o) :=
∫

V
drrr ′

φ j(x′)φk(y′)φl(z′)
|rrr− rrr ′| , (12)

and V indicates the total volume of the system. Due to the definition of the ISF, the discrete

kernel K satisfies K(j,m;k,n; l,o) = K(j−m;k− n; l− o), and therefore equation Eq. (11) is a

convolution, which can be efficiently treated using FFTs (see the previous section). The evaluation

of equation Eq. (12) can be approximated by expressing the inverse of r in a Gaussian basis (1/r'

∑k ωkexp(−pkr2)), which also enables efficient treatment. All this makes the order of this method

N log2(N).

This method is nearly equivalent to the scheme presented in the previous section. ISF’s main

10

characteristic is that it uses a kernel in equation Eq. (3) that yields an accurate free space potential

without having to enlarge the cell. For the purposes of the discussion below we consider it a

different solver since it is distributed as a standalone package that includes its own parallel FFT

routine,42 so it has different scaling properties than the solver based on the PFFT library.

2.3 Fast multipole method (FMM)

The fast multipole method was first proposed in 1987 for 2D systems,43 and it was soon extended

to 3D problems.44 Although only O(N) operations are necessary to calculate the electrostatic

potential, the first FMM versions had big prefactors that in practice made the method competitive

only for huge systems or low accuracy calculations.45 After thorough research, it was possible

to develop signficantly more accurate and efficient versions of FMM,46,47 making it a largely

celebrated method.48

The original FMM was devised to calculate the potential generated by a set of discrete point-

like particles, this is

v(rrri) =
1

4πε0

N

∑
j=1, j 6=i

q j∣∣rrri− rrr j
∣∣ , (13)

which is different from the charge-distribution problem that we are studying in this work. While

extensions of FMM to the continuous problem exist,49–51 in order to profit from the efficient paral-

lel FMM implementations we have devised a simple scheme to recast the continuous problem into

a discrete charge one without losing precision.

We assume that each grid point r j,k,l corresponds to a charge of magnitude Ωρ j,k,l , where

Ω = L3 (L being the grid spacing) is the volume of the space associated to each grid point (cell

volume). Using FMM we calculate at each point the potential generated by this set of charges,

vFMM
j,k,l . However, this is not equivalent to the potential generated by the charge distribution, and

some correction terms need to be included (see supporting info52 for the derivation of these cor-

rections). The first correcting term (self-interaction term) comes from the potential generated at

11

each point by the charge contained in the same cell

vSI
j,k,l = 2π

(
3

4π

)2/3

L2ρ j,k,l . (14)

Additionally, we apply a correction to improve the accuracy of the interaction between neighbour-

ing points, which has the largest error in the point-charge approximation. This correction term is

derived using a formal cubic interpolation of the density to a finer grid, obtaining a simple finite-

differences-like term

vcorr.
j,k,l = L2(27/32+(α)2π(3/4π)2/3)ρ j,k,l

+(L2/16)
(
ρ j−1,k,l +ρ j+1,k,l +ρ j,k−1,l +ρ j,k+1,l +ρ j,k,l−1 +ρ j,k,l+1

)

− (L2/64)
(
ρ j−2,k,l +ρ j+2,k,l +ρ j,k−2,l +ρ j,k+2,l +ρ j,k,l−2 +ρ j,k,l+2

)
.

(15)

Here α is a parameter to compensate the charge within the cell (j,k, l) that is counted twice. The

final expression for the potential is

v j,k,l = vFMM
j,k,l + vSI

j,k,l + vcorr.
j,k,l . (16)

Now we give a brief introduction of the FMM algorithm. More detailed explanations on FMM

can be found in Refs.43,44,46,53 The concrete implementation we used in this work is explained

in.47,54 To introduce the method we use spherical coordinates in what remains of this section.

Consider a system of l charges {qi, i = 1, . . . , l} located at points {(τi,αi,βi), i = 1, . . . , l}

which lie in a sphere D of radius a and center at Q = (τ,α,β). It can be proved46 that the electric

field created by them at a point P = (r,θ ,φ) outside D is

v(P) =
∞

∑
n=0

n

∑
m=−n

Om
n

(r′)n+1Y m
n (θ ′,φ ′) , (17)

12

where P−Q = (r′,θ ′,φ ′) and

Om
n =

l

∑
i=1

qiτn
i Y−m

n (αi,βi) , (18)

with Y m
n (α,β) known functions (the spherical harmonics). If P lies outside of a sphere D1 of radius

a+ τ (see Figure 2 A) the potential of Eq. (17) can be re-expressed as

v(P) =
∞

∑
j=0

j

∑
k=− j

Mk
j

r j+1Y k
j (θ ,φ) , (19)

where

Mk
j =

j

∑
n=0

n

∑
m=−n

Ok−m
j−n i|k|−|m|−|k−m|√(j−n− k+m)!(j−n+ k−m)!

√
(n−m)!(n+m)! τn Y−m

n (α,β)
√
(j− k)!(j+ k)!

.

(20)

Note that the “entangled” expression of the potential equation Eq. (13), in which the coordinates

of the point where the potential is measured and the coordinates of the charge that creates the

potential are together, has been converted to a “factorised” expression, in which the coordinates

of the point where we measure the potential are in terms (Y k
j (θ ,φ)/r j+1) that multiply terms (Mk

j)

which depend on the coordinates of the charges that create the potential. It is this factorisation

which enables efficient calculation of the potential that a set of charges creates at a given point by

using the (previously calculated) expression of the potential created by this set of charges at other

points.

If the set of l charges described above is located inside a sphere DQ of radius a with center

at Q = (τ,α,β) where τ > 2a (see Figure 2 B) then equation Eq. (17) implies that the potential

created by these charges inside a sphere D0 of radius a centered at the origin is given by

v(P) =
∞

∑
j=0

j

∑
k=− j

Lk
j r j Y k

j (θ ,φ) , (21)

13

where

Lk
j =

∞

∑
n=0

n

∑
m=−n

Om
n i|k−m|−|k|−|m|√(n−m)!(n+m)!

√
(j− k)!(j+ k)! Y m−k

j+n (α,β)

(−1)n τ j+n+1
√
(j+n−m+ k)!(j+n+m− k)!

. (22)

A) B)

D1

O

P(r,θ ,φ)

D

Q(τ,α,β)

a

D0 O

P(r,θ ,φ)

Q(τ,α,β)
aDQ

a

τ > 2a

Figure 2: A) A set of point charges (black circles) inside a sphere D of radius a centred at Q =
(τ,α,β) creates a potential outside the sphere D1 of radius (a+ τ) and centred in the origin that
can be expressed with equation Eq. (19). B) A set of point charges (black circles) inside a sphere
DQ of radius a centred at Q = (τ,α,β) creates a potential inside the sphere D0 of radius a and
centred in the origin that can be expressed with equation Eq. (21) (provided that τ > 2a). In both
A) and B), O represents the origin of coordinates, and P = (r,θ ,φ) is the point where the potential
is measured. In our systems, the charges lie in equispaced grid points.

The evaluation of the equations above requires truncation of the infinite sums to a given order,

which can be chosen to keep the error below a given threshold. The equations Eq. (19) and Eq. (21)

enable the efficient calculation of the potential experienced by every charge of the system due to

the influence of the other charges. In order to calculate it, the system is divided into a hierarchy of

boxes. Level 0 is a single box containing the whole system; level 1 is a set of 8 boxes containing

level 0; and so on (a box of level L consists of 8 boxes of level L +1). Different boxes at a given

level do not contain common charges. The highest level (Nl) contains several charges (in our case,

each lying in a grid point) in every box. The procedure to calculate the potential in all grid points

can be summarised as follows:

• For every box in the highest box level Nl (smallest boxes), we calculate the potential created

14

by the charges in that box using equation Eq. (17).

• We gather 8 boxes of level Nl to form every box of level Nl-1. We calculate the potential

created by the charges of the (Nl − 1)-box using the potentials created by the eight (Nl)-

boxes that form it. To this end, we use equation Eq. (19).

• We repeat this procedure (we use equation Eq. (19) to get the potentials created by box L -1

by using those of box L) until all the levels are swept.

• Then, the box hierarchy is swept in the opposite direction: from lower to higher levels, the

equation Eq. (21) is used to calculate the potential created by the boxes (the potential given

by equation Eq. (21) is valid in regions that are not equal to those where equation Eq. (19) is

valid).

• Finally, the total potential in every grid point (vFMM
j,k,l) is calculated as an addition of three

terms: the potentials due to nearby charges are directly calculated with the pairwise formula

equation Eq. (13), and the potentials due to the rest of the charges are calculated either with

equation Eq. (19) or with equation Eq. (21), depending on the relative position of the boxes

which create the potential and the box where the potential is evaluated.

In the whole procedure above, the charge in the grid point (j,k, l) is Ωρ j,k,l . This scheme corre-

sponds to the traditional version of FMM.46 We used a slight modification of it54 which not only

converts multipoles between consecutive levels, but also within every given level, which enables

further computational savings.

2.4 Conjugate gradients

We now present two widely used iterative methods to calculate the electrostatic interaction: con-

jugate gradients and multigrid.55 These methods are based on finding a solution to the Poisson

equation Eq. (2) by starting from an initial guess and systematically refining it so that it becomes

15

arbitrarily closer to the exact solution. These two methods have the advantage that if a good initial

approximation is known, only a few iterations are required.

When using a grid representation, the Poisson equation can be discretised using finite differ-

ences. In this scheme the Laplacian at each grid point is approximated by a sum over the values

of neighbouring points multiplied by certain weights. High-order expressions that include several

neighbours can be used to control the error in the approximation.56 The finite-difference approxi-

mation turns equation (Eq. (2)) into a linear algebraic equation

L̃xxx = yyy , (23)

where L̃ is a sparse matrix (taking advantage of the sparsity of a system of equations can greatly

reduce the numerical complexity of its solution57), yyy is known (y = −ρ/ε0, in this case) and xxx

is the quantity we are solving for, in this case the electrostatic potential. Equation (Eq. (23)) can

be efficiently solved by iterative methods that are based on the application of the matrix-vector

product without the need to store the matrix.

Since the matrix is symmetric and positive definite, we can use the standard conjugate gradi-

ents58 (CG) method. CG builds xxx as a linear combination of a set of orthogonal vectors pppk. In

every iteration, a new term is added

xxxk+1 = xxxk +αk+1 pppk+1 , (24)

which attempts to minimise

f (xxx) :=
1
2

xxxT L̃xxx− xxxT yyy , (25)

whose minimum is the solution of equation Eq. (23). The term added to the potential in iteration

k is built so that xxx moves in the direction of the gradient of f but being orthogonal to the previous

terms. The gradient of f (xxx) satisfies, −∇ f (xxx) = yyy− L̃xxx. Therefore the search direction in iteration

16

k+1 is

pppk+1 =
(

yyy− L̃xxxk

)
−∑

i≤k

pppT
i L̃(yyy− L̃xxxk)

pppT
i L̃pppi

pppi . (26)

The coefficient associated with each direction, αk+1, is obtained from the minimization condition,

yielding

αk+1 =

(
pppT

k+1(yyy− L̃xxxk)

pppT
k+1L̃pppk+1

)
. (27)

The equations above show that the conjugate gradients method has a linear scaling (O(N)) with

the number of points N for a given number of iterations whenever the matrix L̃ has a number of

non-zero entries per row that is much lower than N (as is the usual case for the Poisson equation).

Bigger exponents in the scaling can appear, however, in problems where the number of performed

iterations is chosen to keep the solution error below a given threshold that depends on N.59

The parallelisation of our CG implementation is based on the domain decomposition approach,

where the grid is divided into subregions that are assigned to each process. Since the application of

the finite-difference Laplacian only requires near-neighbour values, only the boundary values need

to be shared between processors (see refs.14,60 for details). Since our implementation can work

with arbitrary shape grids, dividing the grids into subdomains of equal volume while minimizing

the area of the boundaries is not a trivial problem, for this task we use the Metis library.61

An issue that appears when using the finite-difference discretisation to solve the Poisson equa-

tion are boundary conditions: they must be given by setting the values of the points on the border

of the domain. For free space boundary conditions we need a secondary method to obtain the

value of the potential over these points; this additional method can represent a significant fraction

of the computational cost and can introduce an approximation error. In our implementation we use

a multipole expansion.62

2.5 Multigrid

Multigrid55,63–67 is a powerful method to solve elliptic partial differential equations, such as the

Poisson problem,68 in an iterative fashion. Multigrid is routinely used as a solver or precondi-

17

tioner for electronic structure and other scientific applications.69–72 In this section we will make

a brief introduction to a simple version of the multigrid approach that is adequate for the Poisson

problem. Multigrid, however, can also be generalized to more complex problems, like non-linear

problems67 and systems where there is no direct geometric interpretation, in what is known as

algebraic multigrid.73 It has also been extended to solve eigenvalue problems.71,74

Multigrid is based on iterative solvers like Jacobi or Gauss-Seidel.55 These methods are based

on a simple iteration formula, that for equation Eq. (23) reads

xxx← xxx+M−1(yyy− L̃xxx) . (28)

The matrix M is an approximation to L̃ that is simple to invert. In the case of Jacobi, M is the

diagonal of L̃, and for Gauss-Seidel, M is upper diagonal part of L̃. These methods are simple to

implement, in particular in the case of the Laplacian operator, but are quite inefficient by them-

selves, so they are not practical as linear solvers for high-performance applications. However, they

have a particular property: they are very good in removing the high-frequency error of a solution

approximation, where the frequency is defined in relation to the grid spacing. In other words, given

an approximation to the solution, a few iterations of Jacobi or Gauss-Seidel will make the solution

smooth. In multigrid the smothing property is exploited by using a hierarchy of grids of different

spacing, and hence changing the frequency that these smoothing operators can remove efficiently.

A fundamental concept in multigrid is the residual of a linear equation. If we have x̄ as an

approximate solution of equation Eq. (23), the associated residual, bbb, is defined as

bbb = yyy− L̃x̄xx . (29)

We can use the residual to define an alternative linear problem

L̃aaa = bbb . (30)

18

Due to the linearity of the Laplacian operator, finding aaa is equivalent to solving the original linear

problem, equation Eq. (23), as

xxx = x̄xx+aaa. (31)

If a few iterations of a smoothing operator have been applied to the approximate solution, x̄, we

know that the high-frequency components of the corresponding residual bbb should be small. Then

it is possible to represent bbb in a grid that has, for example, two times the spacing without too much

loss of accuracy. In this coarser grid equation Eq. (30) can be solved with less computational cost.

Once the solution aaa is found on the coarser grid, it can be transferred back to the original grid and

used to improve the approximation to the solution using equation Eq. (31).

The concept of calculating a correction term in a coarser grid is the basis of the multigrid

approach. Instead of two grids, as in our previous example, a hierarchy of grids is used, at each

level the residual is transferred to a coarser grid where the correction term is calculated. This is

done up to the coarsest level that only contains a few points. Then the correction is calculated and

transferred back to the finer levels.

To properly define the multigrid algorithm it is necessary to specify the operators that transfer

functions between grids of different spacing. For transferring to a finer grid, typically a linear

interpolation is used. For transferring to a coarser grid a so-called restriction operator is used. In

a restriction operator, the value of the coarse grid point is calculated as a weighted average of the

values of the corresponding points in the fine grid and its neighbors.

Now we introduce the multigrid algorithm in detail. Each quantity is labeled by a super-index

that identifies the associated grid level, with 0 being the coarsest grid and L the finest. We denote

Sl as the smoothing operator at level l, which corresponds to a few steps (usually 2 or 3) of Gauss-

Seidel or Jacobi. Im
l represents the transference of a function from the level l to the level m by

restriction or interpolation. Following these conventions, we introduce the algorithm of a multigrid

iteration in fig. Figure 3. Given an initial approximation for the solution, we perform a few steps

of the smoothing operator, after which the residual is calculated and transferred to the coarser grid.

This iteration is repeated until the coarsest level is reached. Then we start to move towards finer

19

grids. In each step the approximate solution of each level is interpolated into the finer grid and

added, as a correction term, to the solution approximation of that level, after which a few steps

of smoothing are performed. Finally, when the finest level is reached, a correction term that has

contributions from the whole grid hierarchy is added to the initial approximation to the solution.

Multigrid v-cycle
Input: yyy, x̄xx
Output: x̄xx

yyyL← yyy
xxxL← x̄xx
for l from L to 0 do

if l 6= L then
xl ← 0 {Set initial guess to 0}

end if
xxxl ← Slxxxl {Pre-smoothing}
if l 6= 0 then

bbbl ← yyyl− L̃lxxxl {Calculate the residual}
yyyl−1← Il−1

l bbbl {Transfer the residual to the coarser grid}
end if

end for
for l from 0 to L do

if l 6= 0 then
xxxl ← xxxl + Il

l−1xxxl−1 {Transfer the correction to the finer grid}
end if
xxxl ← Slxxxl {Post-smoothing}

end for
x̄xx← xxxL

Figure 3: Algorithm of a multigrid v-cycle.

The scheme presented in Figure 3 is known as a v-cycle, for the order in which levels are visited,

some more sophisticated strategies exist, where the coarsest level is visited twice (a w-cycle) or

more times before coming back to the finest level.67 Usually a v-cycle reduces the error, measured

as the norm of the residual, by around one order of magnitude, so typically several v-cycles are

required to find a converged solution.

When a good initial approximation is not known, an approach known as full multigrid (FMG)

can be used. In FMG the original problem is solved first in the coarsest grid, then the solution

is interpolated to the next grid in the hierarchy, where it is used as initial guess. The process is

20

repeated until the finest grid is reached. It has been shown that the cost of solving the Poisson

equation by FMG depends linearly with the number of grid points.67

Just as in the case of conjugate gradients, the parallelisation of multigrid is based on the do-

main decomposition approach. However in the case of multigrid some additional complications

appear. First of all, as coarser grids are used the domain decomposition approach becomes less

efficient as the number of points per domain is reduced. Secondly, the Gauss-Seidel procedure

used for smoothing should be applied to each point sequentially67 so it is not suitable for domain

decomposition. In our implementation we take the simple approach of applying Gauss-Seidel in

parallel over each domain. For a large number of domains, this scheme would in fact converge to

the less-efficient Jacobi approach.

3 Methods

3.1 Implementation

We chose the OCTOPUS code14,60,75 (revision 8844) a for our tests on the features of Poisson solvers

in the context of quantum mechanics. OCTOPUS is a program for quantum ab initio simulations

based on density functional theory and time-dependent density functional theory for molecules,

one-dimensional systems, surfaces, and solids under the presence of arbitrary external static and

time-dependent fields. Its variables are represented on grids in real spaceb (not using a basis of

given functions), which feature allows for systematic control of the discretisation error, of partic-

ular importance for excited-state properties.77 Furthermore, OCTOPUS uses a multi-level paralleli-

sation scheme where the data is distributed following a tree-based approach. This scheme uses the

message passing interface (MPI) library and was shown to be quite efficient in modern parallel

computers.14 We incorporated recent massively parallelisable versions of the fast Fourier trans-

form33 and of the fast multipole method47 into OCTOPUS. The goal of our tests was to measure

aThe OCTOPUS code is available in a public Subversion repository http://www.tddft.org/svn/
octopus/trunk.

bReal space codes are at present a popular option; see e.g.76

21

execution-times and accuracies of the six selected Poisson solvers, as a function of the system size

and the number of parallel processes. Highlights in our implementation are a novel correcting term

to adapt the FMM method to charge distributions, and a smart, fast way to manage the data flow

for the PFFT.

One must take into account that the execution-time of a function (like a Poisson solver) included

in a bigger program (in this case OCTOPUS) is determined not only by the function itself, but

also by some features of the main program, like the way it represents the data and the pattern

for the data flow between the function and the main program. An example of this is the case

when the FFT method (or ISF, which is based on FFT’s) are used in a code where the spatial

functions are represented in a Cartesian grid of arbitrary shape (like OCTOPUS). Fast Fourier

transforms require parallelepiped grids, while the shape for the grid used in OCTOPUS is commonly

rather amorphous to reduce the total number of points. So, whenever OCTOPUS evaluates a fast

Fourier transform, a parallelepiped mesh containing the original amorphous mesh is used, and the

new entries are filled with zeroes. The library PFFT divides such a parallelepiped grid using a

2D grid of processes (see section Section 2.1) as displayed in Figure 4 B. This means that each

process must handle the data corresponding to a column-like dataset (i.e., a dataset that includes

all the range of points in a given direction direction; for example ρ j,k,l with j = 1, . . . ,n1/4, k =

n2/4+1, . . . ,2n2/4 and l = 1, . . . ,n3, where N = n1n2n3). On the other hand, OCTOPUS divides the

space grid into more compact domains, each handled by a process (see Figure 4 A), to reduce the

surface separating domains and consequently to reduce the need for information transfer between

processes. Therefore, the data that a process deals with in the OCTOPUS main program is not the

same as the PFFT library uses inside, and hence a data transfer is necessary.

The simplest way to carry this data-transfer out is to gather all the data (density ρ or potential

v) in all the processes before copying them from one grid to the other. Unfortunately, this solution

does not scale well to a large number of processors and cannot be used in massively parallel

applications. Nevertheless, we have to use this technique with the serial FFT, because of its serial

nature, and with ISF solvers, because the kernel of the ISF solver needs to work with entire vectors

22

in all processes.

Z
ax

is

X axis

Y
ax

is

A) Octopus mesh B) PFFT mesh

Figure 4: Simplified domain decomposition of the simulation meshes. Each little cube represents
a grid point (83 points in total) and each colour represents a partition (8 partitions). A) OCTOPUS

mesh with a 3D domain decomposition; B) PFFT mesh with a 2D decomposition.

This problem is overcome as follows in the PFFT-based method as implemented in OCTOPUS.

At the initialization stage of OCTOPUS, a mapping between the OCTOPUS mesh decomposition

and the PFFT mesh decomposition is established and saved. This mapping is used when running

the actual solver to efficiently communicate only the strictly necessary grid data, achieving almost

perfectly linear parallel scaling. In addition, all the data-structures of the Poisson solver (mainly

density ρ or potential v) are partitioned among all the processes. In this manner, memory require-

ment per core decreases when more processors are available, and hence, bigger physical systems

can be simulated.

The correction for the FMM method (see section Section 2.3) was also implemented in a very

efficient way, re-expressing its formula for each point to avoid accessing the same memory position

(which stores the charge density of a neighbour of the point where the correction is being calcu-

lated) more than once. Further details about the data-transfer implementation and the correction

method applied to FMM can be found in the supporting info.

3.2 Test on high-performance supercomputing facilities

For carrying our tests out, we have used some of the most powerful computational resources exist-

ing at present in Europe: Curie in France —at Commissariat à l’Energie Atomique (CEA)— and

23

two IBM Blue Gene/P machines —Jugene at the Jülich Supercomputing Center, and Genius at the

Rechenzentrum Garching of the Max Planck Society—. In addition, we have run some tests in a

smaller cluster (Corvo), to provide contrast in the lower range of the number of processors. All four

machines are considered to be representative of the current trends of scientific High Performance

Computing.78–80

The IBM Blue Gene/P systems are based on PowerPC 450 chips at 850 MHz. One chip consists

of 4 cores, and it is soldered to a small motherboard, together with memory (DRAM), to create a

compute card (one node). The amount of RAM per compute card is 2 GiB and they do not have

any type of hard disk. Two rows of 16 compute cards each are plugged into one board to form a

node card. A rack holds a total of 32 node cards, and in total there are 72 racks (294,912 cores) in

Jülich Blue Gene/P (Jugene), and 4 racks (16,384 cores) in Garching (Genius). Each computing

node of Blue Gene/P has 4 communication networks: (a) a 3D torus network for point-to-point

communication, 2 connections per dimension; (b) a network for collective communications; (c) a

network for barriers; and (d) a network for control. I/O nodes, in addition, are connected to a 10

gigabit Ethernet network.

On the other hand, the Curie supercomputer is based on Intel Xeon X7560 processors at 2.6

GHz. Each compute node, called “fat node”, has 32 cores (4 chips of 8 cores each) and 128 GiB

of RAM. The compute nodes are connected with an Infiniband network. In total 11,520 cores and

almost 46 TB of RAM are available.

Finally, the configuration of the cluster Corvo, of the Spanish node of the ETSF and Nano-Bio

Spectroscopy group, is similar to the Curie supercomputer, although in a lower scale. Both the

manufacturer (Bull SAS) and the architecture (x86-64) are the same. More specifically, each node

of Corvo has two Intel Xeon E5645 of 6 cores and 48 GiB of RAM. There are 960 cores in total,

connected with QDR Infiniband.

24

4 Results

In this section we present the results of our tests to measure the execution time and accuracy of the

Poisson solvers discussed in section Section 2. We estimate their quality in terms of speed-up and

accuracy, as well as make some remarks on the influence of some input parameters on them. More

tests and scalability comparisons are presented in the supporting info accompanying this paper.

4.1 Accuracy

We calculate the Hartree potential created by Gaussian charge distributions in an important part of

our tests. Such a potential can be calculated analytically, and hence the error made by any method

can be measured by comparing the two results: numerical and analytical. We defined two different

variables to measure the accuracy of a Poisson solver, D and F , as follows:

D :=
∑i jk |va(rrri jk)− vn(rrri jk)|

∑i jk |va(rrri jk)|
, (32a)

Ea =
1
2 ∑

i jk
ρ(rrri jk)va(rrri jk) , (32b)

En =
1
2 ∑

i jk
ρ(rrri jk)vn(rrri jk) , (32c)

F :=
Ea−En

Ea
, (32d)

where rrri jk are all the points of the analysed grid, va is the analytically calculated potential, and vn

is the potential calculated by either the PFFT, ISF, FMM, CG, or multigrid-based method. Ea and

En are the expressions for the Hartree energies obtained using the potentials that were calculated

analytically and numerically, respectively. These variables provide an estimate of the deviations of

the calculated potential and energy from their exact values. D gives a comprehensive estimate of

the error, for it takes into account the calculated potential in all points. The total Hartree energy

coming from these potentials is a physically relevant variable, so an estimate of its error is also

meaningful.

25

In Table 1 we display some values of D and F for the tested Poisson solvers. The input charge

distributions correspond to Gaussian distributions represented in cubic grids with variable edge

(2Le) and constant spacing between consecutive points (L = 0.2 Å). The additional OCTOPUS

parameters we use are: PoissonSolverMaxMultipole = 7 (for multigrid and conjugate

gradients), MultigridLevels = max_levels (i.e. use all available multigrid levels in the

multigrid calculation), DeltaEFMM = 0.0001 and AlphaFMM = 0.291262136 (for the

fast multipole method). Further information on these parameters can be found in section Sec-

tion 4.3 and in the supplementary material. From Table 1 it can be said that FFT-based methods

Table 1: F and D errors of different Poisson solvers in the calculation of the Hartree potential
created by a Gaussian charge distribution represented on a grid of edge Le = 15.8 Å and spacing
0.2 Å.

F error:
Le (Å) PFFT ISF FMM CG Multigrid

7 2·10−3 2·10−3 2·10−3 2·10−3 2·10−3

10 9·10−6 9·10−6 4·10−6 4·10−6 9·10−6

15.8 2·10−12 3·10−7 3·10−6 3·10−5 5·10−6

22.1 <2·10−12 1·10−11 3·10−6 4·10−4 -1·10−6

25.9 <2·10−12 9·10−12 -4·10−6 5·10−3 2·10−7

31.7 <4·10−13 8·10−12 -3·10−6 1·10−2 -5·10−7

D error:
Le (Å) PFFT ISF FMM CG Multigrid

7 9·10−3 4·10−3 4·10−3 4·10−3 4·10−3

10 1·10−4 2·10−5 8·10−5 3·10−5 2·10−5

15.8 6·10−5 2·10−7 1·10−4 5·10−5 6·10−6

22.1 1·10−5 4·10−10 3·10−4 3·10−4 2·10−6

25.9 4·10−7 7·10−10 3·10−4 5·10−3 4·10−7

31.7 4·10−8 1 ·10−9 2·10−4 1·10−2 4·10−7

(ISF, PFFT and FFT serial) give the best accuracies. Moreover, the multigrid and conjugate gradi-

ent solvers do not produce appropriate results when the set of grid points corresponds to an adapted

shape (as is the usual case in OCTOPUS), and must be used with compact shapes (such as spher-

ical or parallelepiped). Conjugate gradient methods’ accuracy is acceptable for this type of test.

Nevertheless, they show some problems if used in the calculation of the ground state of a set of

electrons to solve the Kohn-Sham equation or to perform time-dependent density functional theory

26

calculations (which require calculation of the Hartree potential). The iterative procedure inherent

to the used conjugate gradient method sometimes shows some convergence problems.

Other than using D and F (which depend solely on the charge density and Hartree potential),

another way to measure accuracy is to calculate the ground state of a given system and check the

effect of the Poisson solver on some of its corresponding quantities. We calculated the ground

state of a system of chlorophyll stretches containing 180 atoms81 (see supporting info for atomic

system information). To this end, we used pseudopotentials, so 460 electrons appeared in the

calculation. The grid shape was a set of spheres of radius 4.0 Å centred at the nuclei, and the grid

spacing was 0.23 Å. The exchange correlation functional was the LDA functional.82 In Table 2

we display the value of the Hartree energy, the highest eigenvalue, and the HOMO-LUMO gap.

PFFT is expected to provide the most accurate results (by considering Table 1). However, the

differences among all five methods can be considered negligible (lower than the errors introduced

by the density functional theory exchange-correlation functional). The maximum difference of

Hartree energy divided by the number of electrons is less than 0.015 eV. The maximum difference

in the HOMO-LUMO gap is less than 0.0092 eV.

Table 2: Comparison of some quantities corresponding to the ground state of a set of chlorophyll
stretches with 180 atoms.

Hartree energy (eV) HOMO (eV) HOMO-LUMO gap (eV)
PFFT 240820.70 -4.8922 1.4471
ISF 240821.48 -4.8935 1.4489
FMM 240817.29 -4.8906 1.4429
CG 240815.01 -4.9009 1.4521
Multigrid 240814.69 -4.8979 1.4506

4.2 Execution time

In order to gauge the performance of the Poisson solvers, we have measured the total execution

time that the calculation of the classical potential took for each method as a function of the number

of processes involved in the resolution (regardless of initialisation times). We ran one single MPI

27

process per core on Curie and Corvo, and only one MPI process per node on Blue Gene/P’s.83

When possible, we ran the same set of standard tests on each of these machines. However, in cases

where the size of the simulated system is high, the limited amount of memory per core becomes

a serious problem. This problem is critical in Blue Gene/P machines, which have only 2 GiB per

node, i.e. 512 MiB per core, so we executed one MPI process per node, with four OpenMP threads.

The Curie supercomputer offers 4 GiB per core, but in some cases we could use more memory by

selecting more cores and keeping them idle. Runs up to 4096 processes were only possible in Blue

Gene/P and Curie machines; for Corvo it was only possible to run up to 512 MPI processes.

In our efficiency tests we calculated the potential created by Gaussian charge distributions

represented in cubic grids with edge length 2Le, where Le is half the edge of the parallelepiped

mesh and the used values were 7.0, 10.0, 15.8, 22.1, 25.9 and 31.7 respectively (always with a

spacing of 0.2). The smallest simulated system, with Le = 7, contains [2 ∗ Le/spacing+ 1]3 =

357,911 grid points. By reason of memory limitations, the largest system simulated on a Blue

Gene/P had Le = 25.9 (17,373,979 points). On the Corvo and Curie machines, we were able to

run a bigger system of Le = 31.7 (31,855,013 points). For the FFT-based methods we used an

additional box, ranging from 1433 to 6373 (up to 5253 on a Blue Gene/P).

28

Se
ri

al
FF

T

IS
F

FM
M

C
G

co
rr

ec
te

d

M
ul

tig
ri

d

PF
FT

L
=

7.
0

0.
010.
111010
0

10
00

1
4

16
64

25
6

10
24

40
96

t(s)

M
PI

pr
oc

.

L
=

10
.0

0.
010.
111010
0

10
00

1
4

16
64

25
6

10
24

40
96

t(s)

M
PI

pr
oc

.
L
=

15
.0

0.
010.
111010
0

10
00

1
4

16
64

25
6

10
24

40
96

t(s)

M
PI

pr
oc

.

L
=

22
.0

0.
010.
111010
0

10
00

1
4

16
64

25
6

10
24

40
96

t(s)

M
PI

pr
oc

.

L
=

25
.0

0.
010.
111010
0

10
00

1
4

16
64

25
6

10
24

40
96

t(s)

M
PI

pr
oc

.

Fi
gu

re
5:

E
xe

cu
tio

n
tim

es
fo

rt
he

ca
lc

ul
at

io
n

of
th

e
H

ar
tr

ee
po

te
nt

ia
lc

re
at

ed
by

a
G

au
ss

ia
n

ch
ar

ge
di

st
ri

bu
tio

n
on

a
B

lu
e

G
en

e/
P

m
ac

hi
ne

as
a

fu
nc

tio
n

of
si

x
di

ff
er

en
tP

oi
ss

on
so

lv
er

s
an

d
of

th
e

in
vo

lv
ed

nu
m

be
ro

fM
PI

pr
oc

es
se

s
(e

ac
h

M
PI

pr
oc

es
s

ha
vi

ng
4

O
pe

nM
P

th
re

ad
s)

fo
rd

iff
er

en
ts

im
ul

at
ed

sy
st

em
si

ze
s

([
2
∗L

e/
0.

2
+

1]
3

po
in

ts
).

29

First, we present the results obtained on a Blue Gene/P machine in Figure 5. Each graph of

the figure represents a different problem size, with a different value of Le. The X axis of Figure 5

shows the used number of MPI processes, each having 4 OpenMP threads. The Y axis is the time

in seconds for the Poisson solver. Increasing memory requirements with higher Le made some

systems not able to fit in the available RAM memory, precluding the opportunity to run the serial

FFT of size Le = 22.1 and above, and multigrid of size Le = 25.9 and above. One of the most

memory consuming part of these tests was the generation of the mesh partitions, one per problem

size per processor, regardless of the solver. Fortunately, these partitions must be done only once

and they are machine independent. Moreover, they could be read from the restart files, which

could also be transferred from one machine to another. However, this is not true of the multigrid

solver, for which the mesh partition must be calculated for every multigrid level, which made it,

impossible, for example, to run the system of size Le = 25.9 due to the high memory requirement

of the partitioning.

As can be observed in Figure 5, all the tests show a similar relative behaviour with regard to the

system size under simulation and the number of MPI processes: execution times decrease with the

number of processes until saturation, and larger systems allow the efficient use of a higher number

of parallel processes, i.e., the solvers “saturates” at a higher number of processes. This is especially

true for the newly implemented solvers, based on PFFT and FMM. Thus, this behaviour leaves the

way open to simulate physical systems of more realistic size if tens of thousands of processors

cores are available.

The multigrid solver shows the poorest results, and saturates with a relatively low number of

parallel processes. The problem comes from the fact that only a limited number of multigrid levels

can be used (obviously, every process needs to use at least one grid point to execute correctly). At

most, we chose the closest natural number to log8(N) as the number of multigrid levels, where N

is the total number of grid points. In fact, if a high number of levels can be used, then the obtained

speed-ups are appreciable, but execution times saturate, and even grow, when a few hundred of

processors are used, so the number of multigrid levels in each process is then decreased.

30

Similarly, the ISF solver shows a limited efficiency; its nonlinear speed-up region appears

at a relatively small number of processes. The main problem with the ISF solver is that the

data-structures of OCTOPUS need to be transferred just before doing actual calculations and af-

ter finishing them. These global communication operations are done calling MPI_Gatherv and

MPI_Scatterv functions, which do not scale linearly with the number of parallel processes.

The conjugate gradient and FMM methods seem to be very efficient approaches in terms of

scalability. However, both become faster than ISF only when thousands of processes are used to

simulate large physical systems, beyond 1024 parallel processes. The CG solver, too, has a limited

accuracy and some convergence problems when it is used for solving the Poisson equation within

TDDFT calculations in OCTOPUS.

Particularly attractive is the good performance obtained with the PFFT solver. Beginning at a

low number of processes, execution times are always lower than those of the other solvers. In fact,

32 processes are enough to hide the overhead added by the parallelisation, and beyond this number

of processes execution times become the best. This is because PFFT’s communication patterns are

so highly effective.

These tests have shown that the new implementations of the Poisson solvers, PFFT and FMM,

offer good scalability and accuracy, and could be used efficiently when hundreds or thousands of

parallel processes are needed. Almost linear performances can be observed until a saturation point

is reached for all cases. There, the obtained efficiency factors10 are always above 50% before those

congestion points. As expected, large systems, which have higher computation needs, can make

better use of a high number of processes.

A similar overall behaviour of the different solvers, with small differences, is also shown in the

other two machines, Curie and Corvo. Figure 6 presents the obtained results for a particular case:

Le = 15.8. As can be observed, the best results are obtained again with the PFFT solver and a high

number of parallel processes. Relative performance between the solvers varies slightly from the

above analysed cases, but the conclusions are very similar.

For the serial case (only one processor), executions times are 4-5 times faster for Curie than

31

0.01

0.1

1

10

100

1000

1 4 16 64 256

t(
s)

MPI proc.

A) Corvo (x86-64)

PFFT
Serial FFT

ISF
FMM

CG corrected
Multigrid

0.01

0.1

1

10

100

1000

1 4 16 64 256

t(
s)

MPI proc.

B) Curie (x86-64)

PFFT
Serial FFT

ISF
FMM

CG corrected
Multigrid

Figure 6: Execution times of the Poisson solver of size Le = 15.8 in Corvo (A) and Curie (B)
supercomputer for all the different solvers varying the number of MPI processes (each MPI process
executed in a CPU processor core).

32

for Corvo, probably because of the size of the L3 cache, 24 MB in the processors of Curie (X7560

- Nehalem processors) and only 12 MB in Corvo (E5645 - Westmere processors). Similar perfor-

mance has been reported for both processors using standard benchmarks c, except for the case of

dot products (vector code), where Curie’s processor reaches 2.5 times more GFlop/s than Corvo’s,

which can also be understood as a consequence of the L3 cache differences.

At any rate, these differences tend to disappear when using a high number of processors, in

part because the size of the problem assigned to each processor is smaller (and so the influence of

the cache size is also lower), and in part because communication among processors, not only data

processing, must also be considered.

0.01

0.1

1

10

100

1 10 100 1000

t(
s)

MPI proc.

Corvo (x86-64)
Curie (x86-64)

Genius (Blue Gene/P)

Figure 7: Execution times of the PFFT solver in Genius (Blue Gene/P), Curie and Corvo (x86-64)
for a system size of Le = 15.8 as a function of the number of MPI processes.

In order to compare more clearly the results obtained in the three computers, Figure 7 shows

the execution times of the PFFT solver for the case of Le = 15.8 in Blue Gene, Curie and Corvo.
cX7560: http://browser.primatelabs.com/geekbench2/198947

and E5645: http://browser.primatelabs.com/geekbench2/389297

33

Execution times are higher in the Blue Gene/P computers for the same number of processes, but

scalability is much better, allowing the efficient use of a much higher number of processes. The

processors of the Blue Gene/P machine are slower than those of Curie and Corvo, but commu-

nication infrastructures are much better (see section Section 3.2). This leads us to conclude that

the execution time of the Poisson solver parallel code is closely related to the performance of the

interprocessor communication system of the parallel computer, more so than on the performance

of the processors themselves.

As stated in section Section 2, the numerical complexities of PFFT and FMM scale as O(N logN)

and O(N) respectively, with N the total number of points required. We have analysed the execution

order by measuring the execution time on Blue Gene/Ps as a function of the volume of the system

for PFFT and FMM in three cases: 16, 32 and 64 parallel processes. The volume ratio among the

smallest (Le = 7) and the largest (Le = 25.9) studied systems is about 49. Our results agree with

the O(N) complexity of the FMM method and the O(N logN) complexity of the PFFT method.

Note that computation time is appreciably higher when using the FMM solver due to its higher

prefactor (the quantity that multiplies N or N logN in the expression of the numerical complexity).

The quotient between prefactors is machine dependent; its value is about 5.5 for Corvo, about 9

for Curie and about 12 for Blue Gene/P. One may think that for very big values of N at a constant

number of processes P, the growth of the term logN would eventually make FMM more efficient

than PFFT. This is strictly true, but the huge N of this eventual crossover precludes it in practice.

For example, our results using 16 cores indicate that this crossover would take place at N > 1053

in Blue Gene/P, and at N ' 4.5 ·1041 in Corvo.

Apart from the speed-up and execution time of a concrete parallel execution, another very

useful quality measure is the weak-scaling. Weak-scaling measures the ability of an algorithm to

scale with the number of parallel processes at a fixed computing load, comparing the execution

time of a problem of size N using P processes with the execution time of the same problem but of

size kN using kP processes. In this way, each process will use the same amount of computational

resources, regardless of the number of processors used. If the algorithm is mainly constricted by

34

computational needs, then execution times should be very similar in both cases. On the other hand,

if communication needs dominates the parallel execution, then execution times will grow with P,

usually faster than linearly. For these tests we have adapted the system sizes of the parallelepiped

meshes to 7.9, 10, 15.8, 20.1 and 25.1 (also 31.7 in Corvo) for the Poisson solver on Blue Gene/P

and Corvo. Since the number of grid points increases like the cube of Le, we did parallel runs

using 4, 8, 32, 64 and 128 MPI processes (256 processes in Corvo). So, the number of grid points

processed in each parallel MPI process is roughly 125,000. Figure 8 shows the obtained results,

with data taken from the profiling output.

On one hand, the weak-scaling factor of the ISF solver increases sharply with the number of

parallel processes, certainly because of the communication needs of the method, and confirming

the conclusions we have obtained previously. The conjugate gradient and multigrid methods show

an important increase in the weak-scaling factor with the number of processes, and this can be

used to predict that parallel execution will “saturate” at a moderate number of processes (as we had

observed in Figure 5). In contrast, FMM shows the best results in the analysed range: weak-scaling

increases very moderately, so we can conclude that communication overheads are quite acceptable

and that the method will offer good speed-up results when using thousands of processes.

PFFT also gives very good results in the Blue Gene/P system. They are similar to those of

FMM, so similar conclusions can be stated. Nonetheless, the results obtained in Corvo up to

256 processes seem to indicate that communication will play an important role if a high number of

processes are to be used. In these cases, the efficiency of the communication network and protocols

of the parallel computer will play an important role in the obtained parallel performance. This can

already be observed in Figure 8: the weak-scaling factor is markedly better and bounded in Blue

Gene/P, a system with a very high performance communication network. Also limited to the Corvo

system, a sharp increment in the weak-scaling factor is observed when passing from 216 (within

only one Infiniband switch, 12× 18 = 216 cores) to 256 cores, that needs communication with

processes in a second switch.

From all our tests, we conclude that the communication needs of the Poisson solvers fit better

35

0

2

4

6

8

10

0 20 40 60 80 100 120 140

no
rm

al
is

ed
w

ea
k

sc
al

in
g

MPI proc.

A) Blue Gene/P

PFFT
ISF

FMM
CG corrected

Multigrid

0

2

4

6

8

10

0 50 100 150 200 250

no
rm

al
is

ed
w

ea
k

sc
al

in
g

MPI proc.

B) Corvo (x86-64)

PFFT
ISF

FMM
CG corrected

Multigrid

Figure 8: Normalised weak-scaling of the measured Poisson solvers in Blue Gene/P (A) and Corvo
(B). Each MPI process has roughly 125,000 points and selected system sizes are given by Le equal
to 7.9, 10, 15.8, 20.1, 25.1 and 31.7 (the latter only in Corvo)

.

36

in the network of a Blue Gene/P machine than in that of a machine with x86-64 processors and

Infiniband network (e.g. Corvo).

4.3 Influence of the input parameters

In this section we discuss several input parameters that we used in our tests of Poisson solvers.

These parameters are the BoxShape (i.e., the spatial structure of the points where the Hartree

potential was calculated), the DeltaEFMM (accuracy tolerance of the energy calculated with

FMM), MultigridLevels (number of stages in the grid hierarchy of the multigrid solver) and

PoissonSolverMaxMultipole (the order of the multipole expansion of the charges whose

potential is analytically calculated when using multigrid or conjugate gradient solvers).

OCTOPUS is able to handle different grid shapes, like spherical, parallelepiped or minimum

shapes (the minimum mesh shape is the addition of spheres centred in each nucleus of the test

system). Apart from the mesh shape and size, the grid is defined by its spacing parameter, i.e., the

distance between consecutive grid points. The minimum mesh shape option in OCTOPUS produces

fair results with FMM. Serial FFT, PFFT, and ISF (which is based on FFT) solvers create a paral-

lelepiped mesh —which contains the original minimum one— to calculate the Hartree potential.

If multigrid or conjugate gradients are used with a minimum mesh, it is frequent to find a serious

loss of accuracy. This is because minimal boxes are usually irregular, and the multipole expansion

(whose terms are based on spherical harmonics, which are rather smooth) cannot adapt well to

arbitrary charge values in irregular meshesd. These effects of box shape made us choose cubic

meshes for our tests. In any case, one should take into account that if non-parallelepiped meshes

are used, FMM suffers less overhead than the solvers based on reciprocal space (FFT, PFFT and

ISF), since FMM can work directly with that data-representation and does not need to transfer data

to a parallelepiped representation. Examples of this can be viewed in Table 3. There, it can be seen

that the execution time is essentially the same regardless of the box shape for PFFT, while spherical

and minimal box shapes are much more efficient than parallelepiped shape for FMM (with a ratio

dSee the explanation of PoissonSolverMaxMultipole below for more information.

37

of about 1.67).

Spherical meshes are still valid for multigrid and conjugate gradient methods. We have com-

pared the relative accuracy of cubic and spherical meshes for FMM, multigrid, and CG meth-

ods containing the same number of points. When FMM is used, both errors decrease while the

mesh size is increased, being relatively equal for both representations, until an accuracy plateau

is reached for big meshes. The same behaviour is shown for the multigrid solver and by the CG

solver up to a given volume for a given system.

Table 3: Comparison of total times required for the calculation of the Hartree potential as a function
of the box shape and radius (R) or semi-edge length (Le) for PFFT and FMM solvers.

PFFT FMM
R||Le(Å) Minimal Sphere Parallelepiped Minimal Sphere Parallelepiped

15.8 1.001 1.032 1.030 3.371 3.5413 5.945
22.1 2.535 2.6641 2.667 10.500 10.447 16.922
25.9 4.321 4.265 4.393 16.321 16.212 27.861
31.7 8.239 8.034 8.271 27.821 28.707 48.206

The implementations of multigrid and conjugate gradient solvers we used in our tests are based

on a multipole expansion. Each value of the input charge density represented on a grid (ρi jk) is

expressed with an analytic term via this multipole expansion, plus a numeric term. The Hartree po-

tential created by the analytic part is calculated analytically, while the Hartree potential created by

the numerical term is calculated numerically with either multigrid or conjugate gradient methods.

Since the use of the analytic term makes the numerical term smaller, numerical errors are expected

to be reduced. Therefore, the smaller the difference between the charge density and its multipole

expansion, the smaller the potential numerically calculated (with multigrid or conjugate gradient

solvers), and the higher the accuracy of the total Hartree potential calculation. An order for the

multipole expansion (the input parameter PoissonSolverMaxMultipole, PSMM) must be

chosen. It is to be stressed that arbitrarily higher values of PSMM do not lead to more accurate

results; rather, there exists a PSMM that minimises the error for each problem. We ran some tests

to obtain this optimal value. In them, we calculated the ground-state of a 180-atom chlorophyll

38

system using OCTOPUS, varying the value of PSMM. This molecule’s size is expected to be large

enough to be representative of a wide range of molecular sizes. The ground state calculations per-

mit one to evaluate the final Hartree energy, as well as the HOMO-LUMO gap, which is defined as

the difference between the highest occupied eigenvalue and the lowest unoccupied eigenvalue in a

density functional theory calculation, and its value can be used for estimations of simulation accu-

racy.84 Table 4 shows the obtained results. For PSMM = 8,9, and 10, the accumulation of errors

was big enough for calculations not to converge (this is because beyond a given order, the spherical

harmonics are too steep to describe the ρ , which is rather smooth). From the data of Table 4, we

chose PSSM = 7 for our simulations (with PSSM = 7 the HOMO-LUMO gap is equivalent to the

reference value given by ISF, and the Hartree energy is the closest one).

Table 4: Ground state values of the Hartree energy and the HOMO-LUMO gap as a function of
the PSMM (input parameter of Multigrid and Conjugate gradients solvers). Reference values are
given by the ISF solver.

Hartree energy (eV) HOMO-LUMO gap
PSMM ISF CG Multigrid ISF CG Multigrid

4 240821.47 240813.51 240813.41 1.4489 1.2179 1.2178
6 240821.47 240813.93 240813.95 1.4489 1.4340 1.4353
7 240821.47 240815.01 240814.69 1.4489 1.4520 1.4506

The implementation we used for FMM47 allows one to tune the relative error of the calcula-

tions. Its expression is the quotient (Ere f −En)/En, i.e. the variable DeltaEFMM, where En is the

Hartree energy calculated with the FMM method and Ere f is an estimation of what its actual value

is. We chose for our calculations a relative error of 10−4. Note that this error corresponds only to

the pairwise term of the Hartree potential, before the correction for charge distribution (see section

Section 2.3 and supporting info) is applied.

5 Conclusions

In this paper we analysed the relative performance of several popular methods (parallel fast Fourier

transform, ISF, fast multipole method, conjugate gradients and multigrid) as implemented in the

39

OCTOPUS code for the calculation of the classical Hartree potential created by a charge distribu-

tion. The first part of the paper presents the fundamentals of these calculation methods. In the

second part, we summarise the computational aspects of the tests we carried out to measure the

methods’ relative performances. These tests were run on three kinds of supercomputers, which

we chose as representative of present-day high performance architectures. In the tests, we focused

on measuring accuracies, execution times, speed-ups and weak-scalings. Test runs involved up to

4,096 parallel processes (each containing 4 OpenMP threads), and solved system sizes from about

350,000 grid points to about 32,000,000 grid points.

Our results (section Section 4) show that PFFT is the most efficient option when a high number

of parallel processes are to be used. The current implementation of PFFT is very efficient, and

should be the default option to study large physical systems using a number of cores beyond a

certain threshold (when PFFT becomes faster than ISF). The fact that the charges are located at

equispaced points makes FFT-based methods suitable for our problem. In special cases when

charges are not lying in equispaced points (e.g. when curvilinear coordinates are used), FMM

should be chosen instead, since it works and is accurate regardless of the charge density’s spatial

location. The FMM solver also shows good performance and scaling, yet its execution times are

greater and its accuracy lower than those of the PFFT solver on the analysed machines. In contrast

to ISF, FMM scales almost linearly up to high values of the number of processes, but since its

numerical complexity has a larger prefactor, it would be competitive with ISF when the number of

parallel processes increases significantly, a scenario in which the performance of ISF “collapses”.

The performance of the conjugate gradients solver has a trend similar to that of FMM, as does

multigrid for low values of the number of processes. Weak-scaling tests show that communication

overheads are the smallest for the FMM solver, while they are acceptable for PFFT, CG, and

multigrid solvers, and they only significantly increases in the case of ISF, as we might expect from

the data of Figure 5.

FFT-based methods (PFFT, serial FFT, and ISF) are more accurate than FMM, conjugate gra-

dients, and multigrid. Hence, they should be chosen if accurate calculations of electrostatics are

40

required. However, according to our tests, the accuracy of all the analysed solvers is expected to

be appropriate for density functional theory and time-dependent density functional theory calcula-

tions (where the calculation of the Hartree potential is an essential step) because these have other

sources of error that will typically have a much stronger impact (section Section 4.1). Neverthe-

less, neither multigrid nor conjugate gradients can reach acceptable accuracy if the data set is not

represented on a compact (spherical or parallelepiped) grid.

The competitive features of PFFT and FMM solvers make them suitable to perform calculations

involving hundreds or thousands of processors to obtain electronic properties of large physical

systems. ISF should be chosen only whenever a low number of parallel processes is to be used.

In the future, we plan to improve the accuracy and efficiency of the Poisson solvers imple-

mented in OCTOPUS (keeping their suitability for both periodic boundaries and open systems) by

taking advantage in the sparsity of the input data85 and by including screened interactions (in the

spirit of86).

Acknowledgement

We would like to express our gratitude to José Luis Alonso, Ivo Kabadshow and David Carda-

mone for support and illuminating advice. We acknowledge the PRACE Research Infrastructure

resource Jugene based on Germany at Forschungszentrum Jülich and Curie based in France at

CEA, funded by GENCI and the Rechenzentrum Garching (RZG) of the Max Planck Society

for the usage of IBM Blue Gene/P. We specially acknowledge Laurent Nguyen for the support

given for the Curie Supercomputer, Heiko Appel for the help given with the Genius supercom-

puter in Garching. We also acknowledge financial support from the European Research Council

Advanced Grant DYNamo (ERC-2010-AdG-Proposal No. 267374), Spanish Grants (FIS2011-

65702-C02-01 and PIB2010US-00652), ACI-Promociona (ACI2009-1036), general funding for

research groups UPV/EHU (ALDAPA, GIU10/02), Grupos Consolidados UPV/EHU del Gobierno

Vasco (IT-319-07) and European Commission project CRONOS (280879-2 CRONOS CP-FP7). P.

García-Risueño is funded by the Humboldt Universität zu Berlin. J. Alberdi-Rodriguez acknowl-

41

edges the scholarship of the University of the Basque Country UPV/EHU. This work was partly

supported by the BMBF under grant 01IH08001B.

Notes and References

(1) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864–B871.

(2) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138.

(3) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997–1000.

(4) Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048–5079.

(5) Umezawa, N. Phys. Rev. A 2006, 74, 032505.

(6) Andrade, X.; Aspuru-Guzik, A. Phys. Rev. Lett. 2011, 107, 183002.

(7) Hartree, D. R. The calculation of atomic structures; J. Wiley: New York, 1957.

(8) Fock, V. A. The Theory of space, time and gravitation; Pergamon Press, 1964.

(9) Casida, M. E.; Jamorski, C.; Bohr, F.; Guan, J.; Salahub, D. R. In Optical Properties from

Density-Functional Theory; American Chemical Society, 1996; Chapter 9, pp 145–163.

(10) García-Risueño, P.; Ibáñez, P. E. International Journal of Modern Physics C (IJMPC) 2012,

1230001.

(11) Gygi, F.; Draeger, E. W.; Schulz, M.; de Supinski, B. R.; Gunnels, J. A.; Austel, V.; Sex-

ton, J. C.; Franchetti, F.; Kral, S.; Ueberhuber, C. W.; Lorenz, J. Large-scale electronic struc-

ture calculations of high-Z metals on the BlueGene/L platform. Proceedings of the 2006

ACM/IEEE conference on Supercomputing, New York, NY, USA, 2006.

(12) Alonso, J. L.; Andrade, X.; Echenique, P.; Falceto, F.; Prada-Gracia, D.; Rubio, A. Phys. Rev.

Lett. 2008, 101, 096403.

42

(13) Andrade, X.; Castro, A.; Zueco, D.; Alonso, J. L.; Echenique, P.; Falceto, F.; Rubio, A. J.

Chem. Theory Comput. 2009, 5, 728–742.

(14) Andrade, X.; Alberdi-Rodriguez, J.; Strubbe, D. A.; Oliveira, M. J. T.; Nogueira, F.; Cas-

tro, A.; Muguerza, J.; Arruabarrena, A.; Louie, S. G.; Aspuru-Guzik, A.; Rubio, A.; Mar-

ques, M. A. L. Journal of Physics: Condensed Matter 2012, 24, 233202.

(15) Alberdi-Rodriguez, J. Analysis of performance and scaling of the scientific code Octopus;

LAP LAMBERT Academic Publishing, 2010.

(16) Amdahl, G. M. Validity of the single processor approach to achieving large scale computing

capabilities. Proceedings of the April 18-20, 1967, spring joint computer conference, New

York, NY, USA, 1967; pp 483–485.

(17) Leach, A. R. Molecular modelling: Principles and applications, 2nd ed.; Pearson Education

- Prentice Hall: Harlow, 2001.

(18) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3094.

(19) Nayfeh, M. H.; Brussel, M. K. Electricity and magnetism; John Wiley & sons, 1985.

(20) Castro, A.; Rubio, A.; Stott, M. J. Canadian Journal of Physics 2003, 81, 1151–1164.

(21) Olivares-Amaya, R.; Stopa, M.; Andrade, X.; Watson, M. A.; Aspuru-Guzik, A. The Journal

of Physical Chemistry Letters 2011, 2, 682–688.

(22) Watson, M. A.; Rappoport, D.; Lee, E. M. Y.; Olivares-Amaya, R.; Aspuru-Guzik, A. The

Journal of Chemical Physics 2012, 136, 024101.

(23) Cooley, J. W.; Tukey, J. W. Math. Comput. 1965, 19, 297–301.

(24) Rozzi, C. A.; Varsano, D.; Marini, A.; Gross, E. K. U.; Rubio, A. Phys. Rev. B 2006, 73,

205119.

43

(25) Van Loan, C. Computational frameworks for the fast Fourier transform; Society for Industrial

Mathematics, 1992; Vol. 10.

(26) Bluestein, L. I. IEEE Trans AU 1970, 18, 451–455.

(27) Ding, H. Q.; Gennery, D. B.; Ferraro, R. D. A Portable 3D FFT Package for Distributed-

Memory Parallel Architectures. Proceedings of 7th SIAM Conference on Parallel Processing,

1995; pp 70–71.

(28) Eleftheriou, M.; Moreira, J. E.; Fitch, B. G.; Germain, R. S. A Volumetric FFT for Blue-

Gene/L. HiPC, 2003; pp 194–203.

(29) Eleftheriou, M.; Fitch, B. G.; Rayshubskiy, A.; Ward, T. J. C.; Germain, R. S. IBM Journal

of Research and Development 2005, 49, 457–464.

(30) Eleftheriou, M.; Fitch, B. G.; Rayshubskiy, A.; Ward, T. J. C.; Germain, R. S. Performance

Measurements of the 3D FFT on the Blue Gene/L Supercomputer. Euro-Par 2005 Parallel

Processing, 2005; pp 795–803.

(31) Pippig, M. PFFT, Parallel FFT subroutine library. http://www.tu-chemnitz.de/

~mpip.

(32) Pippig, M. An Efficient and Flexible Parallel FFT Implementation Based on FFTW. Compe-

tence in High Performance Computing, 2010; pp 125–134.

(33) Pippig, M. Preprint series of the Department of Mathematics, Chemnitz University of Tech-

nology 2012, Preprint 2012-6, 1–9.

(34) Plimpton, S. Parallel FFT subroutine library. http://www.sandia.gov/~sjplimp/

docs/fft/README.html.

(35) Pekurovsky, D. P3DFFT, Parallel FFT subroutine library. http://www.sdsc.edu/us/

resources/p3dfft.

44

(36) Li, N. 2DECOMP&FFT, Parallel FFT subroutine library. http://www.hector.ac.

uk/cse/distributedcse/reports/incompact3d/incompact3d/index.

html.

(37) Truong Duy, T. V.; Ozaki, T. ArXiv e-prints 2012, –.

(38) Frigo, M.; Johnson, S. G. Proceedings of the IEEE 2005, 93, 216–231.

(39) Genovese, L.; Deutsch, T.; Neelov, A.; Goedecker, S.; Beylkin, G. Journal of Chemical

Physics 2006, 125, 074105, Genovese, L. and Deutsch, T. and Neelov, A. and Goedecker,

S. and Beylkin, G.

(40) Genovese, L.; Neelov, A.; Goedecker, S.; Deutsch, T.; Ghasemi, S. A.; Willand, A.; Cal-

iste, D.; Zilberberg, O.; Rayson, M.; Bergman, A.; Schneider, R. The Journal of Chemical

Physics 2008, 129, 014109.

(41) Daubechies, I. Ten Lectures on Wavelets; SIAM, Philadelphia, PA, 1998.

(42) Goedecker, S. Wavelets and their application for the solution of partial differential equations

in physics; Presses Polytechniques et Universitaires Romandes, 1998.

(43) Greengard, L. F.; Rokhlin, V. J. Comp. Phys. 1987, 73, 325–348.

(44) Greengard, L. F.; Rokhlin, V. The Rapid Evaluation of Potential Fields in Three Dimensions;

Springer Press, Berlin, Heidelberg, 1988.

(45) Cheng, H.; Greengard, L. F.; Rokhlin, V. J. Comp. Phys 1999, 155, 468–498.

(46) Greengard, L. F.; Rokhlin, V. Acta Numerica 1997, 6, 229.

(47) Dachsel, H. J. Chem. Phys. 2010, 132, 119901.

(48) Cipra, B. A. SIAM news 2000, 33, 4, .

45

(49) White, C. A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M. Chem. Phys. Lett. 1994, 230,

8–16.

(50) White, C. A.; Johnson, B. G.; Gill, P. M. W.; Head-Gordon, M. Chem. Phys. Lett. 1996, 253,

268–278.

(51) Strain, M.; Scuseria, G.; Frisch, M. Science 1996, 107, 51–53.

(52) See supporting info.

(53) White, C. A.; Head-Gordon, M. J. Chem. Phys. 1994, 101, 6593–6605.

(54) Kabadshow, I.; Dachsel, H. The Error-Controlled Fast Multipole Method for Open and Peri-

odic Boundary Conditions. Fast Methods for Long-Range Interactions in Complex Systems,

Forschungszentrum Jülich, Germany, 2010.

(55) Saad, Y. Iterative Methods for Sparse Linear Systems; Society for Industrial and Applied

Mathematics: Philadelphia, PA, USA, 2003.

(56) Chelikowsky, J. R.; Troullier, N.; Saad, Y. Phys. Rev. Lett. 1994, 72, 1240–1243.

(57) García-Risueño, P.; Echenique, P. J. of Phys. A: Math. and Theor. 2012, 45, 065204.

(58) Hestenes, M. R.; Stiefel, E. J. of research of the national bureau of standards 1952, 49, 409–

436.

(59) Fernández-Serra, M. V.; Artacho, E.; Soler, J. M. Phys. Rev. B 2003, 67, 100101.

(60) Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C.; Andrade, X.; Lorenzen, F.; Marques, M.;

Gross, E.; Rubio, A. Phys. Stat. Sol. B 2006, 243, 2465–2488.

(61) Karypis, G.; Kumar, V. SIAM Journal on Scientific Computing 1998, 20, 359–392.

(62) Flocard, H.; Koonin, S. E.; Weiss, M. S. Phys. Rev. C: Nucl. Phys. 1978, 17, 1682–1699.

(63) Wesseling, P. An introduction to multigrid methods; John Wiley & Sons, 1992.

46

(64) Zhang, J. J. Comp. Phys. 1998, 149, 449–461.

(65) Briggs, W. L. A multigrid tutorial; Wiley, New York, 1987.

(66) Brandt, A. Math. Comput 1977, 31, 333–390.

(67) Trottenberg, U.; Oosterlee, C.; Schüller, A. Multigrid; Academic Press, 2001.

(68) Rostgaard, C.; Jacobsen, K. W.; Thygesen, K. S. Phys. Rev. B 2010, 81, 085103.

(69) Briggs, E. L.; Sullivan, D. J.; Bernholc, J. Phys. Rev. B 1996, 54, 14362–14375.

(70) Beck, T. T. Rev. Mod. Phys. 2000, 72, 1041.

(71) Torsti, T.; Heiskanen, M.; Puska, M. J.; Nieminen, R. M. International Journal of Quantum

Chemistry 2003, 91, 171–176.

(72) Mortensen, J. J.; Hansen, L. B.; Jacobsen, K. W. Phys. Rev. B 2005, 71, 035109.

(73) Shapira, Y. Matrix-Based Multigrid: Theory and Applications; Numerical Methods and Al-

gorithms; Kluwer Academic Publishers, 2003.

(74) Mandel, J.; McCormick, S. Journal of Computational Physics 1989, 80, 442–452.

(75) Marques, M. A. L.; Castro, A.; Bertsch, G. F.; Rubio, A. Computer Physics Communications

2003, 151, 60.

(76) Enkovaara, J. et al. Journal of Physics: Condensed Matter 2010, 22, 253202.

(77) Vila, F. D.; Strubbe, D. A.; Takimoto, Y.; Andrade, X.; Rubio, A.; Louie, S. G.; Rehr, J. J. J.

Chem. Phys. 2010, 133, 034111.

(78) Fletcher, G. D.; Fedorov, D. G.; Pruitt, S. R.; Windus, T. L.; Gordon, M. S. Journal of Chem-

ical Theory and Computation 2012, 8, 75–79.

(79) Jiang, W.; Hodoscek, M.; Roux, B. Journal of Chemical Theory and Computation 2009, 5,

2583–2588.

47

(80) Houzeaux, G.; de la Cruz, R.; Owen, H.; Vázquez, M. Computers and Fluids 2012, –.

(81) Liu, Z.; Yan, H.; Wang, K.; Kuang, T.; Zhang, J.; Gui, L.; An, X.; Chang, W. Nature 2004,

428, 287–292.

(82) Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703–1710.

(83) Definitions of basic concepts on high performance computing (e.g. ’node’ and ’core’) can be

found in.10

(84) Wanko, M.; García-Risueño, P.; Rubio, Á. physica status solidi (b) 2012, 249, 392–400.

(85) Hassanieh, H.; Indyk, P.; Katabi, D.; Price, E. Nearly optimal sparse fourier transform. Pro-

ceedings of the 44th symposium on Theory of Computing, New York, NY, USA, 2012; pp

563–578.

(86) Cerioni, A.; Genovese, L.; Mirone, A.; Sole, V. A. J. Chem. Phys. 2012, 137, 134108.

48

Supporting info of: A survey of the parallel

performance and the accuracy of Poisson solvers for

electronic structure calculations

Pablo García-Risueño,∗,† Joseba Alberdi-Rodriguez,‡ Micael J. T. Oliveira,¶

Xavier Andrade,§ Michael Pippig,‖ Javier Muguerza,‡ Agustin Arruabarrena,‡ and

Ángel Rubio⊥

Humboldt Universität zu Berlin, University of the Basque Country UPV/EHU, University of

Coimbra, Portugal, Harvard University, Chemnitz University of Technology, Germany, and

European Theoretical Spectroscopy Facility and Fritz-Haber Institut (MPG), Germany

E-mail: risueno@physik.hu-berlin.de

Abstract

In this document, we include some information to complement our paper. First we pro-

vide some remarks on the way the data transfer for PFFT1 and FMM2 is carried out in our

implementations. Then we add some remarks on the efficiency of the algorithms. Finally, we

∗To whom correspondence should be addressed
†Institut für Physik, Humboldt Universität zu Berlin, 12489 Berlin, Germany
‡Dept. of Computer Architecture and Technology, Nano-Bio Spectroscopy Group and European Theoretical Spec-

troscopy Facility, Spanish node, University of the Basque Country UPV/EHU, M. Lardizabal, 1, 20018 Donostia/San
Sebastián, Spain

¶Center for Computational Physics, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
§Dept. of Chemistry and Chemical Biology, 12 Oxford street, Cambridge, MA 02138, USA
‖Dept. of Mathematics, Chemnitz University of Technology, 09107 Chemnitz, Germany
⊥Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility, Spanish node, University of the

Basque Country UPV/EHU, Edif. Joxe Mari Korta, Av. Tolosa 72, 20018 Donostia/San Sebastián, Spain - Centro de
Física de Materiales, University of the Basque Country UPV/EHU, 20018 Donostia/San Sebastián, Spain - Fritz-Haber
Institut der Max-Planck Gesellschaft, Faradayweg 4-6, D-14195 Berlin-Dahlem, Germany

S1

ar
X

iv
:1

21
1.

20
92

v2
 [

ph
ys

ic
s.

co
m

p-
ph

]
 1

4
N

ov
 2

01
2

discuss the correction term we devised to adapt the FMM method (originally devised to deal

with point charges) to charge distributions.

For testing purposes we have used different portions of the chlorophyll molecule of the spinach

photosynthetic unit,3 that it is a quite remarkable and complex system. Our test systems consisted

of 180, 441, 650 or 1365 atoms, and contained several chlorophyll units (see figure Figure S1).

The space is represented with cubic grids with edge length 2Le containing these molecules, where

Le is the half of the edge of the parallelepiped mesh and the used values are 15.8, 22.1, 25.9 and

31.7 respectively.

180 atoms 441 atoms

650 atoms 1365 atoms

Figure S1: Different chunks of the chlorophyll molecule of the spinach.

S2

S1 Communication patterns

As stated in our paper, the way the data of variables is transferred from the main program (OCTO-

PUS in this case) and the Poisson solver can be critical for its efficiency. The data-transfer between

the box used for PFFT and that one used by OCTOPUS (which contain different sets of points, see

section 3 methods) has been encapsulated in an specific Fortran module. Each of those box repre-

sentations corresponds to an MPI group. At a given moment, data points have to be send from one

group (sender I) to the other (receiver O). Since both groups stores the same global grid, although

in a different way, each point stored in a given process of one group is also stored in one process

of the other group. For example, if point n is stored in process xi of group I and in process yo of

group O, it should be sent from process xi to process yo. Unfortunately, MPI does not allow to

send information between different groups unless they are disjoint, which is not the current case.

This means communication will have to be done using only one of the groups (senders or receivers

group). This is not a problem, because we can determine the rank of the receiver process in the

I group through the rank in the MPI_COMM_WORLD global communicator. Then, point n is sent

from process xi to process yi.

We have implemented a routine that determines to which process each point should be sent.

This information is then used to put the data in the “correct order”. Then, a simple call to the

MPI_Alltoall function is enough for the communication step. It is important to note that,

using this technique, each process only transfers each point once. Therefore, the total amount of

information that must be sent between all the processes is equal to the number of points in the grid,

and it is independent of the number of processes.

The PFFT library requires two communication steps in addition to the box transformation.

Required communication needs are two MPI_Alltoall calls for every calculated FFT. In total,

six MPI_Alltoall calls are needed in every Poisson solver.

Regarding to the FMM library, three MPI global communication functions have to be executed:

MPI_Allgather, MPI_Allreduce and MPI_Alltoall. Additionally, synchronization be-

tween different FMM levels has to be done using MPI_Barrier.4

S3

S2 More comments on execution-time

Our tests showed that the novel implementations of PFFT5 and FMM2 offer a good scalability and

accuracy, and are competitive if thousands of parallel processes are available. Figure S2 shows

the speed-ups obtained using PFFT for the different system sizes in a BlueGene/P supercomputer.

Almost linear performances can be observed until saturation for all the cases, and the obtained ef-

ficiencies have been always above 50% for just nearly all these points. As expected, large systems,

which have higher computation needs, can make a better use of a high number of processes. Tests

run in Corvo and Curie machines show similar trends (although with efficiency problems of PFFT

for some values of MPI proc.).

S3 Correction terms for FMM

S3.1 General remarks

The fast multipole method (FMM)2,6–9 was devised to efficiently calculate pairwise potentials

created by pointlike charges, like pairwise Coulomb potential. In the literature it is possible to

find some modifications of the traditional FMM which deal with charges which are modelled as

Gaussian functions.10 Such modifications of FMM can be used into LCAO codes as Gaussian11

or FHI-Aims. However, they are not useful when the charge distribution is represented through a

set of discrete charge density values. The Fast Multipole Method presented in2,12 belongs to the

family of FMM methods which calculate the electrostatic potential created by a set of pointlike

charges. This method is very accurate and efficient, but it needs some modifications to work in

programs like OCTOPUS,13,14 where the 3D grid points actually represent charge densities. As

stated in the section ’Theoretical background’ of the paper, the electronic density is a R3 → R

field, where values of the R3 set correspond to a equispaced grid (see Figure S3 C)). The variable

ρ j,k,l is the charge density at the portion of volume (cell) centred in the point (j,k, l). Each cell is

limited by the planes bisecating the lines that join two consecutive grid points, and its volume is

S4

50

100

150

200

250

50 100 150 200 250

sp
ee

d-
up

MPI proc.

A)

7.0
10.0
15.8
22.1
25.9

0

200

400

600

800

1000

1200

1400

1600

1800

0 1000 2000 3000 4000

sp
ee

d-
up

MPI proc.

B)

7.0
10.0
15.8
22.1
25.9

Figure S2: Speed-up of the PFFT Poisson solver in a Blue Gene/P computer for different system
sizes (given by Le, semi-legth of the parallelepiped edge). Largest systems saturate with more
processes than the smallers ones. A) linear speed-up is shown up to 256 processes, independently
of the simulated system. B) saturation point is higher when the simulated system is bigger.

S5

Ω = L3, being L the spacing between consecutive grid points. The density ρ j,k,l is always negative

and it is expected to vary slowly among nearby points.

C)

point P
L/2

charges are equispaced

A)

B)
P

P Error in the integral for V

P neighbours

P semi-neighbours

Figure S3: Scheme of how the inclusion of semi-neighbours of point P (pink points) helps to im-
prove the accuracy of the integration to calculate the Hartree potential. A) Scheme of the function
whose integration will be approximated by a summation, without considering semi-neighbours. B)
id., considering semi-neighbours of point P; The error made by the approximation is proportional
to the yellow surface in A) and B). C) 2D scheme of the grid: green points are grid points, while
pink points are semi-neighbours of P.

The term vSI in equation 16 of the paper can be calculated analytically as follows assuming that

the cell is a sphere of volume Ω:

vSI(~r0) =
∫

Ω
d~r

ρ(~r)
|~r−~r0|

= ρ(~r0)
∫

Ω
d~r

1
|~r−~r0|

' ρ(~r0)
∫ R

0
dr
∫ 2π

0
dφ
∫ π

0
dθ

r2sen(θ)
r

= ρ(~r0)2πL2
(

3
4π

)2/3

, (1)

S6

where we have used the approximation of constant charge density within the cell. One may expect

this approximate way to proceed to be less accurate than the numerical integration of 1/r in a cubic

cell (what is also efficient, since the integration through an arbitrary size cube is proportional to the

integral through a cube of unit volume). However, it happens the converse: the difference between

both methods is small (about 1% of difference between integrals) but, due to error cancellations,

the analytical method is slightly more accurate when calculating potentials.

The term vcorr.
j,k,l in (equation 16) is included to calculate more accurately the potential created

by the charge in cells nearby to (j,k, l). To devise a expression for it, we consider that charge

distribution is similar to sets of Gaussians centred in the atoms of the system. For Gaussian distri-

butions, the greatest concavity near the centre of the Gaussian makes the influence of neighbouring

points to be major for the potential. As we can see in the scheme of Figure S3 A)-B), considering

semi-neighbours of point P (in~r0 := (j,k, l)), i.e., points whose distance to P is not L, but L/2, the

integral of equation 16 of the paper can be calculated in a much more accurate way.

S3.2 Method 1: 6-neighbours correction

We build a corrective term by calculating the charge in the 6 semi-neighbours of every point of the

mesh ~r0 (see Figure S4 for a intuitive scheme). The total correction term is the potential created by

the semi-neighbours (vcorr.+) minus the potential created by the charge lying in the volume of the

semi-neighbour cells that was already counted in vFMM or in vSI (vcorr.−):

vcorr.(~r0) = vcorr.+(~r0)− vcorr.−(~r0) . (2)

S7

In order to calculate vcorr.+, we use the formula por the 3rd degree interpolation polynomial:

f (0) =
(−1)

16
f
(−3

2
L
)
+

9
16

f
(−L

2

)
+

9
16

f
(

L
2

)
− (−1)

16
f
(

3
2

L
)

, (3a)

f
(−L

2

)
=

(−1)
16

f (−2L)+
9
16

f (−L)+
9

16
f (0)− (−1)

16
f (L) , (3b)

f
(

L
2

)
=

(−1)
16

f (−L)+
9

16
f (0)+

9
16

f (L)− (−1)
16

f (2L) . (3c)

So, the semi-neighbours of ~r0 = (x0,y0,z0) are

ρ(x0−L/2,y0,z0) =
−1
16

ρ (x0−2L,y0,z0)+
9

16
ρ (x0−L,y0,z0)

+
9

16
ρ (x0,y0,z0)−

1
16

ρ (x0 +L,y0,z0) ; (4a)

ρ(x0 +L/2,y0,z0) =
−1
16

ρ (x0−L,y0,z0)+
9

16
ρ (x0,y0,z0)

+
9

16
ρ (x0 +L,y0,z0)−

1
16

ρ (x0 +2L,y0,z0) ; (4b)

ρ(x0,y0−L/2,z0) =
−1
16

ρ (x0,y0−2L,z0)+
9

16
ρ (x0,y0−L,z0)

+
9

16
ρ (x0,y0,z0)−

1
16

ρ (x0,y0 +L,z0) ; (4c)

ρ(x0,y0 +L/2,z0) =
−1
16

ρ (x0,y0−L,z0)+
9

16
ρ (x0,y0,z0)

+
9

16
ρ (x0,y0 +L,z0)−

1
16

ρ (x0,y0 +2L,z0) ; (4d)

ρ(x0,y0,z0−L/2) =
−1
16

ρ (x0,y0,z0−2L)+
9

16
ρ (x0,y0,z0−L)

+
9

16
ρ (x0,y0,z0)−

1
16

ρ (x0,y0,z0 +L) ; (4e)

ρ(x0,y0,z0 +L/2) =
−1
16

ρ (x0,y0,z0−L)+
9

16
ρ (x0,y0,z0)

+
9

16
ρ (x0,y0,z0 +L)− 1

16
ρ (x0,y0,z0 +2L) . (4f)

We consider all this six charges to be homogeneously distributed in cells whose volume is Ω/8.

The distance between the centre of these small cells and the centre of the cell whose v we are

S8

calculating (i.e., the cell centred in ~r0) is L/2. So the first part of vcorr.(~r0) is

vcorr.+(~r0) =
(

ρ(x0−L/2,y0,z0)+ρ(x0 +L/2,y0,z0)+ . . .+

+ ρ(x0,y0,z0 +L/2)
)(Ω

8

)(
1

L/2

)
. (5)

Since we have created these new 6 cells, we must subtract the potential created by their corre-

sponding volume from that created by the cells whose volume is partly occupied by these new

cells. This potential is:

vcorr.−(~r0) =
(

ρ(x0−L,y0,z0)+ρ(x0 +L,y0,z0)+ρ(x0,y0−L,z0)+ρ(x0,y0 +L,z0)

+ ρ(x0,y0,z0−L)+ρ(x0,y0,z0 +L)
)(Ω

16

)(
1
L

)
+α vSI(~r0) . (6)

The aim of the term α vSI (i.e., the variable AlphaFMM in OCTOPUS) is to compensate the errors

arising from the assumption that the charge is concentrated at the centre of the cells and reduced

cells. The value of α is tuned to minimize the errors in the potentials.

It is worth to re-express as follows the correction terms of eqs. Eq. (2), Eq. (4f) and Eq. (4f)

avoiding to call to every variable more than once for the sake of getting higher computational

efficiency:

vSI(~r0)+ vcorr.(~r0) = L2
[

ρ(x0,y0,z0)
(
27/32+(1−α)2π(3/4π)2/3) (7)

+(1/16)
(

ρ(x0−L,y0,z0)+ρ(x0 +L,y0,z0)+ρ(x0,y0−L,z0)

+ρ(x0,y0 +L,z0)+ρ(x0,y0,z0−L)+ρ(x0,y0,z0 +L)

−(1/4)
(
ρ(x0−2L,y0,z0)+ρ(x0 +2L,y0,z0)+ρ(x0,y0−2L,z0)

+ρ(x0,y0 +2L,z0)+ρ(x0,y0,z0−2L)+ρ(x0,y0,z0 +2L)
))]

.

S9

A)

B)

Original box: all cell’s size is L2 (2D)

New: Semi-neighbours cell sizes are L2/4

Side cells sizes are 7/8L2

Central cell size is L2/2

(all in 2D)

Figure S4: 2D example of the position of cells containing semi neighbours. Assume the centre
of the plots is ~r0, the point where we want to calculate the correcting term for the potential. The
volume of semi-neighbour cells is L2/4 in 2D, and Ω/8 in 3D. One half of the semi-neighbour cell
occupies the volume of a neighbour cell (the cell whose centre is L away from ~r0). The other half
of the semi-neighbour cell occupies the space of the ~r0-centred cell itself.

We ran tests using the error formula E :=
√

∑i(vExact(~ri)− vFMM(~ri))2, with the index i running

for all points of the system. The inclusion of the correcting term introduced in this section typically

reduced E in a factor about 50.

S3.3 Method 2: 124-neighbours correction

This method is similar to the one explained in the previous section, but with two differences

• It uses 3D interpolation polynomials, instead of 1D polynomials. Then, it considers 53−1 =

124 neighbours in a cube of edge 5L centred in ~r0 to calculate the corrective term for V (~r0)

• The interpolation polynomials representing ρ(x,y,z) are numerically integrated (after their

division by r). This is, we calculate

vcorr.+(~r0) =
∫

125Ω
d~r

ρ(~r)
|~r−~r0|

'
∫

125Ω
d~r

Pol(~r)
|~r−~r0|

. (8)

S10

The integration is to be performed between -5/2L and 5/2L for x, y and z. The interpolation poly-

nomial (with 125 support points) Pol(~r) is

Pol(~r) =
5

∑
i=1

5

∑
j=1

5

∑
k=1

ρ(x0 +(i−3)L,y0 +(j−3)L,z0 +(k−3)L)αi(x)α j(y)αk(z) , (9)

being

α1(ξ) :=
ξ 4

24
− ξ 3

12
− ξ 2

24
+

ξ
12

, (10a)

α2(ξ) :=−ξ 4

6
+

ξ 3

6
+

2ξ 2

3
− 2ξ

3
, (10b)

α3(ξ) :=
ξ 4

4
− 5ξ 2

4
+1 , (10c)

α4(ξ) :=−ξ 4

6
− ξ 3

6
+

2ξ 2

3
+

2ξ
3

, (10d)

α5(ξ) :=
ξ 4

24
+

ξ 3

12
− ξ 2

24
− ξ

12
. (10e)

The quotient of the polynomials αi(x)α j(y)αk(z) divided by |~r−~r0| can be numerically integrated

through the cubic cell of edge 5L and centred in x0. Such integrals can indeed be tabulated, because

equation (Section S3.3) implies vcorr.+(~r0) = vcorr.+(~r0)|L=1 ·L2. Terms of αi(x)α j(y)αk(z)/|~r−~r0|

are often odd functions whose integral is null. The non-zero integrals taking part in (Figure S3)

(with L = 1) can be easily calculated numerically.

S11

Therefore

vcorr.+(~r0) =
5

∑
i=1

5

∑
j=1

5

∑
k=1

ρ(x0 +(i−3)L,y0 +(j−3)L,z0 +(k−3)L) ·
∫

125Ω
d~r

αi(x)α j(y)αk(z)
|~r−~r0|

=
5

∑
i=1

5

∑
j=1

5

∑
k=1

ρ(x0 +(i−3)L,y0 +(j−3)L,z0 +(k−3)L) ·

5

∑
l=1

5

∑
m=1

5

∑
n=1

αi,lα j,mαk,n

∫

125Ω
d~r

xl−1ym−1zn−1

|~r−~r0|

=
5

∑
i=1

5

∑
j=1

5

∑
k=1

ρ(x0 +(i−3)L,y0 +(j−3)L,z0 +(k−3)L) ·

5

∑
l=1

5

∑
m=1

5

∑
n=1

αi,lα j,mαk,nβ (l−1,m−1,n−1)L2 , (11)

where αi,l is the coefficient of ξ l−1 if αi(ξ) and

β (l,m,n) :=
∫ 1/2

−1/2
dx
∫ 1/2

−1/2
dy
∫ 1/2

−1/2
dz

xlymzn
√

x2 + y2 + z2
. (12)

In this case, vcorr.− is equal to all the contributions to V (~r0) due to charges whose position (x,y,z)

satisfies

|x− x0|<= 2L; |y− y0|<= 2L; |z− z0|<= 2L , (13)

including self-interaction integral.

This way to calculate vcorr.+ is not inefficient, because only 27 integrals are not null, and both

α and β are known. In order to calculate vcorr.+(~r0) we need 125 products and additions, what

is essentially the same number of operations which is required in order to calculate the potential

created in ~r0 by the neighbouring points (whose calculation can be removed and then saved). Nev-

ertheless, results using this correction method were worse than that obtained using the first method,

so only that one was implemented into the standard version of OCTOPUS.

S12

References

(1) Pippig, M. PFFT, Parallel FFT subroutine library. http://www.tu-chemnitz.de/

~mpip.

(2) Dachsel, H. J. Chem. Phys. 2010, 132, 119901.

(3) Liu, Z.; Yan, H.; Wang, K.; Kuang, T.; Zhang, J.; Gui, L.; An, X.; Chang, W. Nature 2004,

428, 287–292.

(4) Kabadshow, I.; Dachsel, H.; Hammond, J. Poster: Passing the three trillion particle limit with

an error-controlled fast multipole method. Proceedings of the 2011 companion on High Per-

formance Computing Networking, Storage and Analysis Companion, New York, NY, USA,

2011; pp 73–74.

(5) Pippig, M. Preprint series of the Department of Mathematics, Chemnitz University of Tech-

nology 2012, Preprint 2012-6, 1–9.

(6) Greengard, L. F.; Rokhlin, V. J. Comp. Phys. 1987, 73, 325–348.

(7) Greengard, L. F.; Rokhlin, V. The Rapid Evaluation of Potential Fields in Three Dimensions;

Springer Press, Berlin, Heidelberg, 1988.

(8) Greengard, L. F.; Rokhlin, V. Acta Numerica 1997, 6, 229.

(9) Cheng, H.; Greengard, L. F.; Rokhlin, V. J. Comp. Phys 1999, 155, 468–498.

(10) Strain, M.; Scuseria, G.; Frisch, M. Science 1996, 107, 51–53.

(11) Frisch, M. J. et al. Gaussian 09 Revision A.1, 2009. www.gaussian.com, Gaussian Inc.

Wallingford CT 2009.

(12) Kabadshow, I.; Dachsel, H. The Error-Controlled Fast Multipole Method for Open and Peri-

odic Boundary Conditions. Fast Methods for Long-Range Interactions in Complex Systems,

Forschungszentrum Jülich, Germany, 2010.

S13

(13) Castro, A.; Appel, H.; Oliveira, M.; Rozzi, C.; Andrade, X.; Lorenzen, F.; Marques, M.;

Gross, E.; Rubio, A. Phys. Stat. Sol. B 2006, 243, 2465–2488.

(14) Marques, M. A. L.; Castro, A.; Bertsch, G. F.; Rubio, A. Computer Physics Communications

2003, 151, 60.

S14

