101 research outputs found

    The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms

    Get PDF
    Abstract Background Neuroblastoma is a relatively common and highly belligerent childhood tumor with poor prognosis by current therapeutic approaches. A novel anti-cancer agent of the di-2-pyridylketone thiosemicarbazone series, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), demonstrates promising anti-tumor activity. Recently, a second-generation analogue, namely di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), has entered multi-center clinical trials for the treatment of advanced and resistant tumors. The current aim was to examine if these novel agents were effective against aggressive neuroblastoma in vitro and in vivo and to assess their mechanism of action. Methods Neuroblastoma cancer cells as well as immortalized normal cells were used to assess the efficacy and selectivity of DpC in vitro. An orthotopic SK-N-LP/Luciferase xenograft model was used in nude mice to assess the efficacy of DpC in vivo. Apoptosis in tumors was confirmed by Annexin V/PI flow cytometry and H&E staining. Results DpC demonstrated more potent cytotoxicity than Dp44mT against neuroblastoma cells in a dose- and time-dependent manner. DpC significantly increased levels of phosphorylated JNK, neuroglobin, cytoglobin, and cleaved caspase 3 and 9, while decreasing IkBα levels in vitro. The contribution of JNK, NF-ĸB, and caspase signaling/activity to the anti-tumor activity of DpC was verified by selective inhibitors of these pathways. After 3 weeks of treatment, tumor growth in mice was significantly (p < 0.05) reduced by DpC (4 mg/kg/day) given intravenously and the agent was well tolerated. Xenograft tissues showed significantly higher expression of neuroglobin, cytoglobin, caspase 3, and tumor necrosis factor-α (TNFα) levels and a slight decrease in interleukin-10 (IL-10). Conclusions DpC was found to be highly potent against neuroblastoma, demonstrating its potential as a novel therapeutic for this disease. The ability of DpC to increase TNFα in tumors could also promote the endogenous immune response to mediate enhanced cancer cell apoptosis

    Heterocyclic dithiocarbazate iron chelators: Fe coordination chemistry and biological activity

    Get PDF
    The iron coordination and biological chemistry of a series of heterocyclic dithiocarbazate Schiff base ligands is reported with regard to their activity as Fe chelators for the treatment of Fe overload and also cancer. The ligands are analogous to tridentate heterocyclic hydrazone and thiosemicarbazone chelators we have studied previously which bear NNO and NNS donor sets. The dithiocarbazate Schiff base ligands in this work also are NNS chelators and form stable low spin ferric and ferrous complexes and both have been isolated. In addition an unusual hydroxylated ligand derivative has been identified via an Fe-induced oxidation reaction. X-ray crystallographic and spectroscopic characterisation of these complexes has been carried out and also the electrochemical properties have been investigated. All Fe complexes exhibit totally reversible Fe couples in mixed aqueous solvents at potentials higher than found in analogous thiosemicarbazone Fe complexes. The ability of the dithiocarbazate Schiff base ligands to mobilise Fe from cells and also to prevent Fe uptake from transferrin was examined and all ligands were effective in chelating intracellular Fe relative to known controls such as the clinically important Fe chelator desferrioxamine. The Schiff base ligands derived from 2-pyridinecarbaldehyde were non-toxic to SK-N-MC neuroepithelioma (cancer) cells but those derived from the ketones 2-acetylpyridine and di-2-pyridyl ketone exhibited significant antiproliferative activity

    Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase

    Get PDF
    The endoplasmic reticulum (ER) plays a major role in the synthesis, maturation and folding of proteins and is a critical calcium (Ca2+) reservoir. Cellular stresses lead to an overwhelming accumulation of misfolded proteins in the ER, leading to ER stress and the activation of the unfolded protein response (UPR). In the stressful tumor microenvironment, the UPR maintains ER homeostasis and enables tumor survival. Thus, a novel strategy for cancer therapeutics is to overcome chronically activated ER stress by triggering pro-apoptotic pathways of the UPR. Considering this, the mechanisms by which the novel anti-cancer agent, Dp44mT, can target the ER stress response pathways were investigated in multiple cell-types. Our results demonstrate that the cytotoxic chelator, Dp44mT, which forms redox-active metal complexes, significantly: (1) increased ER stress-associated pro-apoptotic signaling molecules (i.e., p-eIF2α, ATF4, CHOP); (2) increased IRE1α phosphorylation (p-IRE1α) and XBP1 mRNA splicing; (3) reduced expression of ER stress-associated cell survival signaling molecules (e.g., XBP1s and p58IPK); (4) increased cleavage of the transcription factor, ATF6, which enhances expression of its downstream targets (i.e., CHOP and BiP); and (5) increased phosphorylation of CaMKII that induces apoptosis. In contrast to Dp44mT, the iron chelator, DFO, which forms redox-inactive iron complexes, did not affect BiP, p-IRE1α, XBP1 or p58IPK levels. This study highlights the ability of a novel cancer therapeutic (i.e., Dp44mT) to target the pro-apoptotic functions of the UPR via cellular metal sequestration and redox stress. Assessment of ER stress-mediated apoptosis is fundamental to the understanding of the pharmacology of chelation for cancer treatment

    Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics

    Get PDF
    Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics

    Unraveling the mysteries of serum albumin—more than just a serum protein

    No full text
    Serum albumin is a multi-functional protein that is able to bind and transport numerous endogenous and exogenous compounds. The development of albumin drug carriers is gaining increasing importance in the targeted delivery of cancer therapy, particularly as a result of the market approval of the paclitaxel-loaded albumin nanoparticle, Abraxane®. Considering this, there is renewed interest in isolating and characterizing albumin-binding proteins or receptors on the plasma membrane that are responsible for albumin uptake. Initially, the cellular uptake and intracellular localization of albumin was unknown due to the large confinement of the protein within the vascular and interstitial compartment of the body. Studies have since assessed the intracellular localization of albumin in order to understand the mechanisms and pathways responsible for its uptake, distribution and catabolism in multiple tissues, and this is reviewed herein

    Structure-activity relationships of novel iron chelators for the treatment of iron overload disease: The methyl pyrazinylketone isonicotinoyl hydrazone series

    No full text
    The design of novel Fe chelators with high Fe mobilization efficacy and low toxicity remains an important priority for the treatment of Fe overload disease. We have designed and synthesized the novel methyl pyrazinylketone isonicotinoyl hydrazone (HMPIH) analogs based on previously investigated aroylhydrazone chelators. The HMPIH series demonstrated high Fe mobilization efficacy from cells and showed limited to moderate antiproliferative activity. Importantly, this novel series demonstrated irreversible electrochemistry, which was attributed to the electron-withdrawing effects of the noncoordinating pyrazine N-atom. The latter functionality played a major role in forming redox-inactive complexes that prevent reactive oxygen species generation. In fact, the Fe complexes of the HMPIH series prevented the oxidation of ascorbate and hydroxylation of benzoate. We determined that the incorporation of electron-withdrawing groups is an important feature in the design of N,N,O-aroylhydrazones as candidate drugs for the treatment of Fe overload disease

    Membrane transport and intracellular sequestration of novel thiosemicarbazone chelators for the treatment of cancer

    No full text
    Iron is a critical nutrient for DNA synthesis and cellular proliferation. Targeting iron in cancer cells using specific chelators is a potential new strategy for the development of novel anticancer agents. One such chelator, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), possesses potent and selective anticancer activity (J Med Chem 50:3716-3729, 2007). To elucidate the mechanisms of its potent antitumor activity, Bp4eT was labeled with ¹⁴C. Its efficacy was then compared with the 14C-labeled iron chelator pyridoxal isonicotinoyl hydrazone (PIH), which exhibits low anticancer activity. The ability of these ligands to permeate the cell membrane and their cellular retention was examined under various conditions using SK-N-MC neuroepithelioma cells. The rate of [ ¹⁴C]PIH uptake into cells was significantly (p &lt; 0.001) lower than that of [ ¹⁴C]Bp4eT at 37°C, indicating that the increased hydrophilicity of [ 14C]PIH reduced membrane permeability. In contrast, the efflux of [ ¹⁴C]PIH was significantly (p &lt; 0.05) higher than that of [ ¹⁴C]Bp4eT, leading to increased cellular retention of [ ¹⁴C]Bp4eT. In addition, the uptake and release of the 14C-labeled chelators was not reduced by metabolic inhibitors, indicating that these processes were energy-independent. No significant differences were evident in the uptake of [ ¹⁴C]Bp4eT at 37 or 4°C, demonstrating a temperature-independent mechanism. Furthermore, adjusting the pH of the culture medium to model the tumor microenvironment did not affect [ ¹⁴C]Bp4eT membrane transport. It can be concluded that [ ¹⁴C]Bp4eT more effectively permeated the cell membrane and evaded rapid efflux in contrast to [ ¹⁴C]PIH. This property, in part, accounts for the more potent anticancer activity of Bp4eT relative to PIH.10 page(s

    HPLC methods for determination of two novel thiosemicarbazone anti-cancer drugs (N4mT and Dp44mT) in plasma and their application to in vitro plasma stability of these agents

    No full text
    The aim of this study was to develop and validate HPLC methods for the determination in plasma of two novel thiosemicarbazone anti-tumour drugs developed in our laboratories (Dp44mT and N4mT). The appropriate separations were achieved using a HS F5 HPLC column with the mobile phase composed of a mixture of either acetate buffer/EDTA or EDTA and acetonitrile (62:38 and 50:50, v/v, respectively). The plasma samples were pretreated with SPE (phenyl and C18, respectively). Furthermore, these methods were successfully applied to in vitro plasma stability experiments. The investigation has clearly shown that both thiosemicarbazones are markedly more stable in plasma than their aroylhydrazone forerunners.7 page(s

    The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis

    No full text
    The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors causing degenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Friedreich’s ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly, this offers potential therapeutic targets in the development of future treatments for these degenerative diseases

    Iron chelators of the dipyridylketone thiosemicarbazone class: Precomplexation and transmetalation effects on anticancer activity

    No full text
    We previously reported a series of di-2-pyridylketone thiosemicarbazone (HDpT) chelators that showed marked and selective antitumor activity (Whitnall, M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 14901−14906). To further understand their biological efficacy, we report the characterization and activity of their MnII, CoIII, NiII, CuII, and ZnII complexes. The X-ray crystal structures of four divalent (Mn, Ni, Cu, and Zn) and one trivalent (Fe) complexes are reported. Electrochemistry shows the FeIII/II and CuII/I potentials of the complexes may be redox-active within cells. Stability constants were also determined for the MnII, NiII, CuII, and ZnII complexes. All divalent complexes underwent transmetalation upon encountering FeII, to form low spin ferrous complexes. Importantly, the divalent MnII, NiII, CuII, and ZnII complexes of the HDpT analogues are equally active in preventing proliferation as their ligands, suggesting the complexes act as lipophilic vehicles facilitating intracellular delivery of the free ligand upon metal dissociation
    corecore