68 research outputs found

    Augmenting neurocognitive remediation therapy to Preventive Cognitive Therapy for partially remitted depressed patients:protocol of a pragmatic multicentre randomised controlled trial

    Get PDF
    Introduction Major depressive disorder (MDD) affects 163 million people globally every year. Individuals who experience subsyndromal depressive symptoms during remission (ie, partial remission of MDD) are especially at risk for a return to a depressive episode within an average of 4 months. Simultaneously, partial remission of MDD is associated with work and (psycho)social impairment and a lower quality of life. Brief psychological interventions such as preventive cognitive therapy (PCT) can reduce depressive symptoms or relapse for patients in partial remission, although achieving full remission with treatment is still a clinical challenge. Treatment might be more effective if cognitive functioning of patients is targeted as well since cognitive problems are the most persisting symptom in partial remission and predict poor treatment response and worse functioning. Studies show that cognitive functioning of patients with (remitted) MDD can be improved by online neurocognitive remediation therapy (oNCRT). Augmenting oNCRT to PCT might improve treatment effects for these patients by strengthening their cognitive functioning alongside a psychological intervention. Methods and analysis This study will examine the effectiveness of augmenting oNCRT to PCT in a pragmatic national multicentre superiority randomised controlled trial. We will include 115 adults partially remitted from MDD with subsyndromal depressive symptoms defined as a Hamilton Depression Rating Scale score between 8 and 15. Participants will be randomly allocated to PCT with oNCRT, or PCT only. Primary outcome measure is the effect on depressive symptomatology over 1 year. Secondary outcomes include time to relapse, cognitive functioning, quality of life and healthcare costs. This first dual approach study of augmenting oNCRT to PCT might facilitate full remission in partially remitted individuals as well as prevent relapse over time. Ethics and dissemination Ethical approval was obtained by Academic Medical Center, Amsterdam. Outcomes will be made publicly available

    Effectiveness of Emotional Memory Reactivation vs Control Memory Reactivation Before Electroconvulsive Therapy in Adult Patients With Depressive Disorder A Randomized Clinical Trial:A Randomized Clinical Trial

    Get PDF
    Importance: Although electroconvulsive therapy (ECT) is often effective, approximately half of patients with depression undergoing ECT do not benefit sufficiently, and relapse rates are high. ECT sessions have been shown to weaken reactivated memories. The effect of emotional memory retrieval on cognitive schemas remains unknown. Objective: To assess whether emotional memory retrieval just before patients receive ECT sessions weakens underlying cognitive schemas, improves ECT effectiveness, increases ECT response, and reduces relapse rates. Design, Setting, and Participants: In this multicenter randomized clinical trial conducted from 2014 to 2018 in the departments of psychiatry in 3 hospitals in the Netherlands, 72 participants were randomized 1:1 to 2 parallel groups to receive either emotional memory reactivation (EMR-ECT) or control memory reactivation (CMR-ECT) interventions before ECT sessions. The Hamilton Depression Rating Scale (HDRS [total score range: 0-52, with 0-7 indicating no depression and ≥24 indicating severe depression]) was used to measure symptoms of depression during and after ECT, with a 6-month follow-up period. Participants were between ages 18 and 70 years with a primary diagnosis of unipolar major depressive disorder (MDD) according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) and in whom ECT was indicated. Data analysis was performed from July to November 2019. Interventions: EMR-ECT or CMR-ECT interventions prior to ECT sessions. Main Outcomes and Measures: Depression scores and relapse rates within 6 months were assessed with the HDRS and analyzed using logistic and linear multiple regression analyses. Results: A total of 66 patients (mean [SD] age, 49.3 [12.3] years; 39 [59.1%] women) were randomized to the EMR-ECT group (n = 32) or the CMR-ECT group (n = 34). Regardless of the memory intervention, 42.4% (28 of 66) of patients responded (≥50% decrease of symptom severity on the HDRS). Of patients who responded, 39.3% (11 of 28) relapsed within 6 months. Remission rates (CMR-ECT group, 29.4% [10 of 34] vs EMR-ECT group, 25.0% [8 of 32]; P = .58), mean (SD) HDRS scores after the ECT course (CMR-ECT group, 14.6 [8.6] vs EMR-ECT group, 14.9 [8.8]; P = .88), total mean (SD) number of required ECT sessions for response (CMR-ECT group, 14.9 [7.9] vs EMR-ECT group, 15.6 [7.3]; P = .39), and relapse rates (CMR-ECT group, 46.7% [7 of 15] vs EMR-ECT group, 30.8% [4 of 13]; P = .33) were not significantly altered by the intervention. Conclusions and Relevance: Study findings suggest that the EMR-ECT intervention just before patient receipt of ECT for depression did not improve effectiveness, increase speed of response, or reduce relapse rates after the ECT course compared with patients receiving CMR-ECT. Trial Registration: Trialregister.nl Identifier: NL4289

    The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium

    Full text link
    Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium. We assessed group differences in whole-brain functional connectivity at both the regional and network level, and investigated whether functional connectivity could serve as biomarker to identify patient status at the individual level using machine learning analysis. The mega-analyses revealed widespread abnormalities in functional connectivity in OCD, with global hypo-connectivity (Cohen’s d: -0.27 to -0.13) and few hyper-connections, mainly with the thalamus (Cohen’s d: 0.19 to 0.22). Most hypo-connections were located within the sensorimotor network and no fronto-striatal abnormalities were found. Overall, classification performances were poor, with area-under-the-receiver-operating-characteristic curve (AUC) scores ranging between 0.567 and 0.673, with better classification for medicated (AUC = 0.702) than unmedicated (AUC = 0.608) patients versus healthy controls. These findings provide partial support for existing pathophysiological models of OCD and highlight the important role of the sensorimotor network in OCD. However, resting-state connectivity does not so far provide an accurate biomarker for identifying patients at the individual level

    Symptom Dimensions in OCD: Item-Level Factor Analysis and Heritability Estimates

    Get PDF
    To reduce the phenotypic heterogeneity of obsessive-compulsive disorder (OCD) for genetic, clinical and translational studies, numerous factor analyses of the Yale-Brown Obsessive Compulsive Scale checklist (YBOCS-CL) have been conducted. Results of these analyses have been inconsistent, likely as a consequence of small sample sizes and variable methodologies. Furthermore, data concerning the heritability of the factors are limited. Item and category-level factor analyses of YBOCS-CL items from 1224 OCD subjects were followed by heritability analyses in 52 OCD-affected multigenerational families. Item-level analyses indicated that a five factor model: (1) taboo, (2) contamination/cleaning, (3) doubts, (4) superstitions/rituals, and (5) symmetry/hoarding provided the best fit, followed by a one-factor solution. All 5 factors as well as the one-factor solution were found to be heritable. Bivariate analyses indicated that the taboo and doubts factor, and the contamination and symmetry/hoarding factor share genetic influences. Contamination and symmetry/hoarding show shared genetic variance with symptom severity. Nearly all factors showed shared environmental variance with each other and with symptom severity. These results support the utility of both OCD diagnosis and symptom dimensions in genetic research and clinical contexts. Both shared and unique genetic influences underlie susceptibility to OCD and its symptom dimensions.Obsessive Compulsive FoundationTourette Syndrome AssociationAnxiety Disorders Association of AmericaAmerican Academy of Child and Adolescent Psychiatr

    Standards of care for obsessive–compulsive disorder centres

    Get PDF
    In recent years, many assessment and care units for obsessive–compulsive disorder (OCD) have been set up in order to detect, diagnose and to properly manage this complex disorder, but there is no consensus regarding the key functions that these units should perform. The International College of Obsessive- Compulsive Spectrum Disorders (ICOCS) together with the Obsessive Compulsive and Related Disorders Network (OCRN) of the European College of Neuropsychopharmacology (ECNP) and the Anxiety and Obsessive Compulsive Disorders Section of the World Psychiaric Association (WPA) has developed a stand- ards of care programme for OCD centres. The goals of this collaborative initiative are promoting basic standards, improving the quality of clinical care and enhance the validity and reliability of research results provided by different facilities and countries

    Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium.

    Get PDF
    Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Brain structural covariance networks in obsessive-compulsive disorder : a graph analysis from the ENIGMA Consortium

    Get PDF
    In the largest brain structural covariance study of OCD to date, Yun et al. show a less segregated organization of structural covariance networks and a reorganization of brain hubs, including cingulate and orbitofrontal regions, in OCD. The findings point to altered trajectories of brain development and maturation. Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z -score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    An Empirical Comparison of Meta- and Mega-Analysis With Data From the ENIGMA Obsessive-Compulsive Disorder Working Group

    Get PDF
    Objective: Brain imaging communities focusing on different diseases have increasingly started to collaborate and to pool data to perform well-powered meta- and mega-analyses. Some methodologists claim that a one-stage individual-participant data (IPD) mega-analysis can be superior to a two-stage aggregated data meta-analysis, since more detailed computations can be performed in a mega-analysis. Before definitive conclusions regarding the performance of either method can be drawn, it is necessary to critically evaluate the methodology of, and results obtained by, meta- and mega-analyses.Methods: Here, we compare the inverse variance weighted random-effect meta-analysis model with a multiple linear regression mega-analysis model, as well as with a linear mixed-effects random-intercept mega-analysis model, using data from 38 cohorts including 3,665 participants of the ENIGMA-OCD consortium. We assessed the effect sizes and standard errors, and the fit of the models, to evaluate the performance of the different methods.Results: The mega-analytical models showed lower standard errors and narrower confidence intervals than the meta-analysis. Similar standard errors and confidence intervals were found for the linear regression and linear mixed-effects random-intercept models. Moreover, the linear mixed-effects random-intercept models showed better fit indices compared to linear regression mega-analytical models.Conclusions: Our findings indicate that results obtained by meta- and mega-analysis differ, in favor of the latter. In multi-center studies with a moderate amount of variation between cohorts, a linear mixed-effects random-intercept mega-analytical framework appears to be the better approach to investigate structural neuroimaging data
    corecore