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�Appendix 1.

Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common

trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compul-

sive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans

acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD

Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33

cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the

similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global

networks were characterized using measures of network segregation (clustering and modularity), network integration (global effi-

ciency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks

was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures

were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the net-

work density range of K = 0.10–0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach.
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Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering

(P50.0001), lower modularity (P50.0001), and lower small-worldness (P = 0.017). Detection of community membership

emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-trans-

formed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative

of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with

OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this

study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance

networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morph-

ometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, par-

ticularly in cingulate and orbitofrontal regions.
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Introduction
Three decades of neuroimaging research support the view

that structural brain abnormalities in obsessive-compulsive

disorder (OCD) do not merely involve alterations in discrete

brain regions, but rather are best characterized in terms of

altered networks of brain structures (Boedhoe et al., 2017).

More specifically, brain-based models of OCD have empha-

sized the role of the cortico-striato-thalamo-cortical loops

and have also suggested the involvement of fronto-limbic,

fronto-parietal and cerebellar regions (Menzies et al., 2008;

Milad and Rauch, 2012; de Wit et al., 2014; Piras et al.,

2015; van den Heuvel et al., 2016; Boedhoe et al., 2017,

2018; Fouche et al., 2017). Most studies of brain networks

in OCD have used resting state functional MRI (rs-fMRI)

(Soriano-Mas and Harrison, 2017; Gürsel et al., 2018), with

alterations evident in intra-network connections of fronto-

limbic and fronto-striatal networks (Anticevic et al., 2014;

Gottlich et al., 2014; Posner et al., 2014; Armstrong et al.,

2016; de Vries et al., 2017; Takagi et al., 2017).

Furthermore, a meta-analysis of rs-fMRI studies comparing

OCD to healthy controls found decreased intra-network

connectivity of the fronto-parietal and salience networks, as

well as reduced inter-network connectivity between the sali-

ence, fronto-parietal and default-mode networks (Gürsel

et al., 2018).

Brain structural covariance networks reflect intra-individ-

ual (Yun et al., 2016; Seidlitz et al., 2018a) or inter-individ-

ual (Alexander-Bloch et al., 2013; Kaczkurkin et al., 2019;

Wannan et al., 2019) covariation in morphology of different

brain areas, which may in turn point to common trajectories

in brain development and maturation (Yun et al., 2015,

2016; Hunt et al., 2016). Such networks may focus on a

range of morphological features including regional brain vol-

ume (Spreng et al., 2019), cortical thickness (Solé-Casals

et al., 2019), cortical surface area (Sharda et al., 2017), and

cortical white-grey contrast (Makowski et al., 2019), as well

as the paired or conjoint patterns between different brain

regions (Seidlitz et al., 2018b; Hoagey et al., 2019) Brain

structural covariance has been estimated using Pearson’s cor-

relation coefficient (Seidlitz et al., 2018a; Solé-Casals et al.,

2019; Wannan et al., 2019), partial least squares (Hoagey

et al., 2019; Spreng et al., 2019), non-negative matrix factor-

ization (Kaczkurkin et al., 2019), and inverse exponential of
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the difference between z-score transformed brain morpho-

logical values (Wee et al., 2013; Yun et al., 2015, 2016),

among others. Structural covariance networks are more

similar to patterns of functional connectivity than the archi-

tecture of white matter connections, suggesting that areas

that co-vary in morphological characteristics also belong to

the same functional network (Zielinski et al., 2010; Soriano-

Mas et al., 2013). Such networks are thought to be shaped

by genetic and environmental influences from early child-

hood (Richmond et al., 2016) and may continue to be

reshaped during the lifespan (Alexander-Bloch et al., 2013;

Aboud et al., 2019; Qi et al., 2019) by a range of trophic

influences (Ferrer et al., 1995; Draganski et al., 2004;

Mechelli et al., 2005).

Inter-individual brain structural covariance networks

have been explored in a few studies of OCD and healthy

controls. For example, Pujol et al. (2004) found a negative

association between relative volume reduction for OCD

(compared to healthy controls) in the medial prefrontal-

insulo-opercular cortical regions and relative volume en-

largement of ventral striatum, suggesting that abnormal

brain morphology in OCD might be distributed in coordi-

nated fashion across diverse brain regions. In addition, a

recent mega-analysis found higher covariance between

volumes of left putamen and left frontal operculum, and

higher covariance between volumes of right amygdala and

ventromedial prefrontal cortex in OCD compared to

healthy controls (Subira et al., 2016). Further, local cor-

tical gyrification (associated with cortical maturation)-

based structural covariance network demonstrated lower

covariance among mainly ventral brain regions in OCD

compared to healthy controls (Reess et al., 2018b).

However, few studies have explored intra-individual brain

structural covariance networks in OCD; consequently our

understanding of the factors that influence changes in glo-

bal and regional network characteristics within individu-

als with OCD is limited.

The ENIGMA-OCD Working Group has collaborated on

developing a large database of structural brain imaging in

OCD and healthy controls, providing a unique opportunity

to undertake such an exploration. Here we constructed

intra-individual structural covariance networks from region

of interest-based brain morphological features using 37 data-

sets worldwide (n = 1616 for OCD; n = 1463 for healthy

controls), and investigated network topology using a graph

theory approach. The current study aimed to capture the

intra-individual distribution of brain morphological changes

(Wee et al., 2013; Yun et al., 2015, 2016) in OCD across

33 cortical surface areas, 33 cortical thickness values, and

six subcortical volumes (Kremen et al., 2013; Amlien et al.,

2016; Sussman et al., 2016; Vijayakumar et al., 2016;

Krongold et al., 2017; Schmaal et al., 2017). Thus edge

weights of the intra-individual structural covariance net-

works were estimated in proportion to the similarity be-

tween two brain morphological features in terms of

deviation from healthy controls (i.e. z-score transformed).

Networks were characterized at the global level using meas-

ures of network segregation (clustering coefficient and

modularity), network integration (global efficiency), and

their balance (small-worldness), as well as at the regional

level using betweenness, closeness, and eigenvector central-

ities (Lancichinetti and Fortunato, 2009; Rubinov and

Sporns, 2010; Cao et al., 2016; Palaniyappan et al., 2016;

Vriend et al., 2018). For preservation of the network edge

weights-related information in the derived graph metrics, the

global and regional graph metrics were summed across the

network density range of K = 0.10–0.25 (Uehara et al.,

2014).

Previous neuroimaging studies of global network metrics

have reported more (Zhang et al., 2011, 2014), less (Shin

et al., 2014; Armstrong et al., 2016; Jung et al., 2017;

Reess et al., 2018a), or similar levels (Reess et al., 2016) of

segregated organization of white matter-based structural

connectivity networks, resting state functional connectivity

networks, or local gyrification index-based structural covari-

ance networks in individuals with OCD, compared to

healthy controls. These inconsistent findings raise the need

for larger-scale meta-analysis. Therefore, the current study

aimed to assess the level of global network segregation, as

determined by the global clustering coefficient, using

the largest dataset of structural covariance networks in

OCD to date.

Materials and methods

Samples

This study included 37 datasets from 26 international re-
search institutes participating in the OCD Working Group of
the ENIGMA (Enhancing NeuroImaging and Genetics
through Meta-Analysis) Consortium used in the meta-analytic
between-group comparisons of OCD and healthy controls in
terms of the subcortical volumes (Boedhoe et al., 2017), cor-
tical surface area and cortical thickness (Boedhoe et al.,
2018), in addition to the cortical and subcortical asymmetry
(Kong et al., 2019). Each dataset included demographic and
neuroimaging data from OCD and healthy controls, as well
as OCD clinical data (Table 1 and Supplementary material).
The diagnosis of psychiatric disorders including OCD and
other comorbid disorders (if any) was made using a struc-
tured or semi-structured interview; the Structured Clinical
Interview for DSM-IV [SCID-I (First et al., 2002); n = 23
datasets], the Mini-International Neuropsychiatric Interview
[MINI (Sheehan et al., 1998); n = 6 datasets], the Anxiety
Disorder Interview Schedule [ADIS (Silverman et al., 2001;
Grisham et al., 2004); n = 2 datasets], or the Schedule for
Affective Disorders and Schizophrenia for School-Aged
Children: Present and Lifetime Version [K-SADS-PL
(Kaufman and Schweder, 2003); n = 7 datasets] (Table 1 and
Supplementary material). Comorbid lifetime depressive dis-
order was present in 256 individuals with OCD, and comor-
bid lifetime anxiety disorder was present in 267 (Table 1 and
Supplementary material). At the time of MRI acquisition, 721
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individuals with OCD were on psychotropic medication and
881 were not. Age of illness onset of OCD was 18.8 � 9.1
years, and illness duration was 10.8 � 10.1 years (n = 1415).
Severity of obsessive-compulsive symptoms was assessed with
the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS; for
patients aged 518) or Children’s Y-BOCS (CY-BOCS; for
patients aged 518); the mean score of 24.2 � 6.8 (n = 1581)
indicated a moderate to severe range of symptoms in the
study population. All local institutional review boards per-
mitted the use of extracted numerical measures for meta-
analysis.

Image acquisition and processing

Structural T1-weighted brain MRI scans were acquired and
processed at each study site. For acquisition parameters of each
site see Supplementary Table 1. All parcellations were per-
formed with fully automated segmentation software FreeSurfer
version 5.3. (Fischl, 2012), following standardized ENIGMA
protocols (http://enigma.usc.edu/protocols/imaging-protocols/).
To ensure quality control, we visually inspected the segmenta-
tions of 68 (34 left and 34 right) cortical grey matter regions
and seven subcortical regions based on the Desikan-Killiany
atlas (Desikan et al., 2006) and statistically evaluated the data
for outliers (Boedhoe et al., 2017, 2018). We excluded the vol-
ume values of bilateral entorhinal cortices and the nucleus
accumbens because of segmentation issues (as calculation of
intra-individual brain structural covariance networks requires
every region of interest to be adequately measured in each par-
ticipant; inclusion of regions of interest with relatively poorer
quality segmentations would effectively decrease sample size).

Intra-individual cortical-subcortical
structural covariance networks

As illustrated at ‘step 1’ in Fig. 1, bilaterally-averaged values
(where brain regions were poorly segmented in one hemisphere,
the value from the contralateral hemisphere was used as a
proxy) of 33 cortical surface area regions of interest, 33 cortical
thickness regions of interest, and six subcortical volume regions
of interest, were corrected for age, sex, and individual brain size
(Vuoksimaa et al., 2016) per dataset (n = 37). The resulting
residuals were then z-score transformed using mean and SD val-
ues of each region of interest calculated from healthy controls
(to derive the degrees of brain morphological variations per re-
gion of interest relative to the ‘average healthy controls’ values).
Finally, a measure of joint variation (which is not the same as
the classical statistical definition of covariance) between the 72
morphometric features (33 cortical surface area values, 33 cor-
tical thickness values, and six subcortical values) represented the
edge-weights (distributed between 0 and 1) of the network and
was calculated using the following formula (Yun et al., 2015,
2016):

[Intra-individual brain structural covariance (joint variation) be-

tween the ith (for i = 1 to 72) and j-th (for j = 1 to 72) regions of

interest in the k-th (for k = 1 to ‘total number of participants per

dataset’) participant] = 1/exp{[(z-transformed value of i-th region of

interest in k-th participant) – (z-transformed value of j-th region of

interest in k-th participant)]2} (1)

Graph theory approach: single
subject level

Global network characteristics

Intra-individual structural covariance networks were thresh-
olded (using ‘threshold_proportional.m’ function in network
density range of K = 0.05–0.30; with interval of 0.01) and
binarized (using the ‘weight-conversion.m’ function; e.g. when
we applied a density threshold of K = 0.10, the edge weights in
the network were sorted into numerical order and a cut-off was
applied to retain only the strongest 10% of edges with edge
weights converted to ‘1’ and edges weights for other remaining
edges becomes ‘0’ (Fig 2, steps 2A and 3A). From these thresh-
olded and binarized networks, four global metrics were deter-
mined: (i) global clustering (a tendency for brain regions to
segregate into locally interconnected triplets of neighbouring
nodes); (ii) global modularity (a measure of the segregation of
the network into communities where nodes are more strongly
connected with each other than nodes outside the community
because of similar morphological characteristics; this measure is
operationalized as the most frequently occurring value over 500
runs of estimation using ‘modularity_und.m’) (Newman, 2006;
Reichardt and Bornholdt, 2006); (iii) global efficiency (how well
on average each node is connected to all others based on the
minimum number of steps nodes are separated from each
other); and (iv) small-worldness (a measure of balance between
the degree of segregation versus integration in brain network)
using the Brain Connectivity Toolbox (Rubinov and Sporns,
2010) in MATLAB R2017a (Weinberg et al., 2016; Das et al.,
2018; Zaremba et al., 2018).

Among the diverse network density levels of K = 0.05–0.30
(with density interval of 0.01), only in the narrower network
density levels of K = 0.10–0.25, three criteria of (Uehara et al.,
2014) (i) network connectedness (4 80% of nodes remain con-
nected to other nodes within the network); (ii) modular organ-
ization (modularity 4 0.3); and (iii) small-world organization
(small-worldness 4 1) were satisfied for 495% of the intra-in-
dividual structural covariance networks comprising each dataset
(n = 37). Therefore, these network density levels of K = 0.10–
0.25 (density interval = 0.01) were selected for the between-
group comparison of global network characteristics, community
membership detection, and hub profiling using the regional net-
work characteristics (Fig. 2, step 3A). Estimation of the global
network characteristics was done using Brain Connectivity
Toolbox (https://www.nitrc.org/projects/bct/) in MATLAB
R2017a.

Detection of community membership

In addition, we assessed community membership (Fortunato,
2010) for each structural covariance (joint variation) network.
For thresholded (K = 0.10–0.25) and binarized intra-individual
structural covariance (joint variation) networks, detection of
communities [i.e. densely connected subgroups of nodes in a
network (Power et al., 2013)] was conducted using the InfoMap
algorithm (Rosvall and Bergstrom, 2007; Fortunato, 2010;
Power et al., 2011; Kawamoto and Rosvall, 2015). First, a par-
ticipant-level co-classification matrix (Dwyer et al., 2014) that
represented the fraction of network density level, in which each
pair of nodes was clustered into the same community according
to the InfoMap algorithm (Rosvall and Bergstrom, 2007;
Kawamoto and Rosvall, 2015), was generated. Second, the
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InfoMap algorithm was applied to this co-classification matrix
to generate a participant-level consensus of community member-
ship (Fornito et al., 2016). All procedures other than the
InfoMap-based community estimation were done using
MATLAB R2017a software (https://kr.mathworks.com).

Hub profiling and regional network
characteristics

Principal brain regions that could be essential indicators of brain
morphological changes within the network were assessed using
hub profiling, which provided three local network measures:
(i) betweenness centrality (the frequency of a node being located
in the shortest path for each pair of two other nodes in a net-
work); (ii) closeness centrality (the ease with which one node
can reach all other nodes within a network); and (iii) eigen-
vector centrality (a self-referential measure of centrality that
reflects the presence of connectedness of one node to other
nodes with high eigenvector centrality) (Rubinov and Sporns,
2010) (Fig 2, step 2B). As distribution of these local network
measures does not follow normal distribution in a scale-free net-
work, prior to the between-group comparison and meta-ana-
lysis, these regional centrality metrics were rank-transformed
using the ‘tiedrank.m’ function of MATLAB R2017a and were
averaged in the network density range of K = 0.10–0.25 to be
re-ranked at participant-level; participant-level hubs were
selected as top-10 ranked nodes in two or three centralities. All
of the procedures described above were conducted using the
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) and
MATLAB R2017a software (https://kr.mathworks.com).

Meta-analysis of graph metrics

Global network characteristics

Meta-analysis of between-group differences in global network
characteristics across the whole dataset (n = 37; Fig. 2, step 3A)
was performed using a random-effects meta-analytic model
(Hedges and Vevea, 1998; Kambeitz et al., 2016) incorporating
the bias-corrected standardized mean difference (SMD =
Hedges’ g) between OCD and healthy controls for each of the
four global network characteristics (summated over the network
density range of K = 0.10–0.25) that satisfied network connect-
edness, modular organization, and small-world organization;
see ‘Graph theory approach: single subject level’ section).
Summary effect sizes were calculated with restricted maximum-
likelihood estimator (REML) (Raudenbush, 2009; Viechtbauer,
2010). Estimates for heterogeneity were assessed with the I2

value (Raudenbush, 2009). For all analyses, a significance level
of P 5 0.01 was used, i.e. P50.05/5 number of global net-
work characteristics (= 4) plus local network-related measure of
the Dice coefficient (= 1; see section below) (Kambeitz et al.,
2016). All statistical analyses were conducted using the R pack-
age ‘metafor’ version 2.0.0 (Viechtbauer, 2010).

Community membership

First, summation of network-transformed community profiles
for each individual provided dataset-level co-classification matri-
ces (in which higher edge weights indicated that two nodes were
clustered in the same community across a large proportion of
participants in dataset) for OCD and for healthy controls
(Fornito et al., 2016). Second, consensus of community mem-
bership at dataset level (for OCD and healthy controls

Figure 1 Schematic description of the study procedures: construction of intra-individual brain structural covariance net-

works. HC = healthy controls; L = left; M = mean; R = right; ROI = region of interest; SD = standard deviation.
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separately) was estimated by applying the InfoMap algorithm to
the weighted and thresholded (at density level of K = 0.10) ver-
sion of the dataset-level co-classification matrices. Third, data-
set-level consensus community profiles of OCD and healthy
controls were binarized, multiplied by the square root of

participants number per dataset, and summed to generate the
meta-analytic co-classification matrices of OCD or healthy con-
trols (n = 37). Finally, a weighted and thresholded (at density
level of K = 0.10) version of these meta-analytic co-classification
matrices underwent InfoMap-based community detection, to

Figure 2 Schematic description of the study procedures. (A) Calculation of graph theory metrics from the intra-individual brain struc-

tural covariance networks at single-subject level and (B) meta-analytic integration of graph theory metrics for 37 datasets. HC = healthy con-

trols; ROI = region of interest.
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determine the meta-analytic consensus community profile for
brain structural covariance networks of OCD and healthy con-
trols. All procedures other than the InfoMap-based community
estimation were performed using MATLAB R2017a.

Hub profiling and regional network characteristics

In the current study, hub profiling was done to find the princi-
pal brain regions that could be essential indicators of intra-indi-
vidual distribution of brain morphological changes (= deviation
from healthy controls) based on the three local metrics of
betweenness, closeness, and eigenvector centralities (Fig. 2).
Three rank-transformed centralities (betweenness, closeness, and
eigenvector) were rank-transformed at the participant level, and
were averaged in the network density range of K = 0.10–0.25.
The top 10 ranked nodes (i.e. 10 nodes illustrated in Fig. 4 and
Supplementary Fig. 1) for two or three centralities as calculated
from the summation of participant-level centrality values within
each dataset (n = 37) were classified as dataset-level hubs for
OCD or healthy controls. Finally, meta-analytic hub scores for
all network nodes (= 33 cortical surface area values + 33 cor-
tical thickness values + six subcortical volumes) were calculated
by summing the values of [(presence (= 1) or absence (= 0) of
network nodes in the hub profile of each dataset) � (square
root of participants number per dataset)] across the whole data-
set (n = 37) for OCD and healthy controls separately; top-10
ranked nodes for this meta-analytic hub score were defined as
meta-analytic hubs for OCD or healthy controls, respectively.

Between-group comparison of rank-transformed centrality
values at the dataset level (n = 37) was performed using the
Wilcoxon rank sum test. Nodes that showed statistically signifi-
cant differences between OCD and healthy controls (P50.05)
were recoded into MNI coordinates using brainGraph (https://
cran.r-project.org/web/packages/brainGraph), and underwent
coordinate-based meta-analysis, i.e. activation likelihood estima-
tion (ALE), using gingerALE version 2.3.6. (Eickhoff et al.,
2017). In this ALE-based meta-analysis, nodes that showed sig-
nificant effect sizes [cluster-level corrected threshold of P50.05
(family-wise error, FWE); cluster-forming threshold at voxel
level of P50.001] for between-group differences in two or
three centralities were considered valid (Fig. 2, step 3B).

Lastly, to explore the difference in hubs in terms of their topo-
graphical location between OCD and healthy controls, we also
calculated the Dice similarity coefficient (Dice, 1945), a measure
of the degree of overlap between each participant-level hub pro-
file versus the reference (= hub profile of healthy controls per
dataset). For meta-analysis, the bias-corrected SMD (Hedges’ g)
of Dice similarity coefficient (i) between the healthy controls
and OCD (37 dataset) as well as (ii) between unmedicated OCD
and medicated OCD (12 dataset in which 410 participants
existed for all of the two subgroups) were calculated and
entered into a random-effects meta-analytic model (Schmidt
et al., 2009; Kambeitz et al., 2016). Summary effect sizes were
calculated with REML (Raudenbush, 2009; Viechtbauer, 2010),
and estimates for the amount of heterogeneity were assessed by
way of the I2 value (= the percentage of total variability across
dataset that is due to heterogeneity than by chance) (Higgins
et al., 2003). For all analyses, a significance level of P 5 0.05
(two-tailed) was used (Kambeitz et al., 2016) and all statistical
analyses were conducted using the R package ‘metafor’ version
2.0.0 (Viechtbauer, 2010).

Influence of comorbid lifetime
depressive or anxiety disorders in
patients with OCD

Thirty-five (of 37) datasets provided information about comor-
bid lifetime depressive and anxiety disorders in OCD individu-
als; meta-analysis of global network characteristics and Dice
coefficients was conducted to assess between-group differences
in (i) OCD with and without comorbid lifetime depressive dis-
order (n = 10 datasets, in which n410 for both OCD sub-
groups); and (ii) OCD with and without comorbid lifetime
anxiety disorders (n = 7 datasets, in which n 4 10 for both
OCD subgroups).

Influence of medication

Twenty-seven (of 37) datasets provided information about medi-
cation status (= presence or absence of psychotropic medication
prescribed at the time of MRI data acquisition) of OCD individu-
als; meta-analytic integration for the between-group comparison
of regional network characteristics (= centralities) between medi-
cated OCD versus unmedicated OCD was undertaken for these
datasets. Furthermore, meta-analytic integration of between-
group differences for global network metrics and Dice coefficients
were conducted using results retrieved from 12 datasets (in which
n410 for both medicated and unmedicated subjects).

Influence of OCD illness duration

Fisher’s z-transformed correlation coefficients between the OCD
illness duration and four global network metrics were calculated
per dataset (n = 32 datasets). Each of these correlation coefficients
per dataset and per global network characteristics were meta-ana-
lytically integrated using the same pipeline as for the global net-
work characteristics. Likewise, Spearman correlation coefficients
between the OCD illness duration and rank-transformed (betwe-
enness, closeness, or eigenvector) centrality measures were also
calculated per dataset. Meta-analysis of the dataset-level nodes
that showed significant correlation with OCD illness duration
(P50.05) was performed using using gingerALE version 2.3.6
[P50.05 (cluster-level FWE)] (Eickhoff et al., 2017).

Data availability

De-identified data are available from the corresponding author
upon reasonable request.

Results

Patients with OCD versus healthy
controls

Demographic and clinical characteristics

A total of 37 datasets worldwide (n = 1616 for OCD;

n = 1463 for healthy controls) were included in this study.

Demographic and clinical characteristics for each dataset are

described in Table 1 and Supplementary material. Between-

group (OCD versus healthy controls) statistical tests for age

(using the independent t-test) and sex ratio (using the
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chi-squared test) did not show statistically significant differ-

ences between OCD and healthy controls (P4 0.05) for 31

(83.8%) and 34 datasets (91.9%), respectively. On the other

hand, years of education (information available for 27 data-

sets) were fewer in OCD compared to healthy controls

(P5 0.05) in 10 (27.0%) datasets.

Global network characteristics

Meta-analysis of global network characteristics for the intra-

individual brain structural covariance networks (Table 2

and Fig. 3A–D) showed lowered global clustering and

modularity in OCD compared to healthy controls (all P’s 5

0.01). Global efficiency and small-worldness did not differ

significantly between OCD and healthy controls (all P’s 4
0.01). When the sample was divided into two groups (adults

and adolescents), and analyses run in each, these findings

continued to hold true (Table 2). Additional meta-analyses

using years of education as a moderator did not show any

significant influence of this variable (all P’s 4 0.05) on ei-

ther the global network metrics of global clustering

(Qm = 1.456, df = 2, P = 0.483), modularity (Qm = 0.819,

df = 2, P = 0.664), global efficiency (Qm = 0.673, df = 2,

P = 0.714), and small-worldness (Qm = 0.139, df = 2,

P = 0.933), or on the Dice similarity coefficient (Qm = 1.447,

df = 2, P = 0.485).

Figure 3 Forest plots of the meta-analysis of global graph metrics comparying the OCD and healthy control groups. (A) Global

clustering, (B) small-worldness, (C) modularity, (D) global efficiency, and (E) dice similarity coefficient. HC = healthy controls; ROI = region of

interest.
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Community membership

Community membership analysis detected that the healthy

controls network had six modules (or subgroups within the

network), while the OCD network had three modules, indi-

cative of less global network segregation. The six community

modules of the healthy controls network (Fig. 4 and

Supplementary Fig. 1) were module 1 [the principal (31

nodes); including six hubs of cortical surface area for medial

orbitofrontal, caudal middle frontal, and parahippocampal

cortices, as well as cortical thickness for posterior cingulate,

pars triangularis, and insula], module 2 [cingulate-parietal-

inferior frontal (13 nodes)], module 3 [subcortical (six

nodes); including two hubs named pallidal and caudate vol-

umes], module 4 [frontal pole-occipital (six nodes); including

cortical thickness for cuneus as hub], module 5 [paracentral-

temporal (six nodes); including a hub of paracentral cortical

thickness], and module 6 [insula-perisylvian (five nodes)]. As

smaller communities with less than four nodes (55% of

total nodes) were excluded, six nodes comprising module 2

for healthy controls [cortical surface area of caudal-rostral

anterior cingulate and lateral orbitofrontal cortices, in add-

ition to cortical thickness of paracentral, superior parietal,

and supramarginal cortices] were not classified in these

communities.

In contrast, community membership of individualized

structural covariance networks for OCD (Fig. 4 and

Supplementary Fig. 1) showed just three modules: module 1

[in which eight OCD hubs for cortical surface area of super-

ior temporal sulcus (module 1 in healthy controls), posterior

cingulate (module 2 in healthy controls), rostral middle

frontal-insular-superior temporal (module 6 in healthy con-

trols), and pericalcarine cortices, as well as cortical thickness

of caudal anterior cingulate-frontal pole (module 1 in

healthy controls) included], module 2 [comprising cortical

thickness of inferior parietal lobule-precuneus (module 2 in

healthy controls) in addition to cuneus-lingual-pericalcarine

gyri (module 4 in healthy controls)], and module 3 (includes

a hub named hippocampal volume).

Regional network characteristics

Of the 10 hubs for the OCD network (Fig. 4 and

Supplementary Fig. 1), only one node, i.e. cortical thickness

of postcentral cortex [member of the paracentral-temporal

module in healthy controls; fifth community (red square) in

Supplementary Fig. 1], was found among the 10 healthy

controls hubs. Meta-analysis of Dice similarity coefficients

showed lower Dice similarity coefficient in OCD compared

to healthy controls (Table 2 and Fig. 3E), indicating that the

nodes classified as hubs differed between OCD and healthy

controls. In terms of the centralities, compared to healthy

controls, rank-transformed centrality of caudate nucleus vol-

ume was lower in OCD (healthy controls hub; Fig. 5A and

Supplementary Fig. 3).

Influence of comorbid lifetime
depressive or anxiety disorders in
patients with OCD

No significant differences in global network characteristics

or Dice similarity coefficients were found between OCD

with comorbid lifetime depression versus OCD without life-

time depression, nor between OCD with comorbid lifetime

anxiety disorder versus OCD without lifetime anxiety dis-

order (Table 2).

Figure 3 Continued

694 | BRAIN 2020: 143; 684–700 J.-Y. Yun et al.

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa001#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa001#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa001#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa001#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awaa001#supplementary-data


Influence of medication for OCD

No significant differences in global network characteristics or

Dice similarity coefficients were found between medicated and

unmedicated OCD (Table 2). The structural covariance net-

works of healthy controls, medicated OCD, and unmedicated

OCD demonstrated five, three, and two modules (or subgroups

within the network), respectively (Supplementary Fig. 2).

Influence of OCD illness duration

OCD illness duration did not show significant correlations

with global network characteristics (Table 2). However,

OCD illness duration showed significant positive relation-

ships with centrality (Fig. 5C and Supplementary Fig. 5) of

cortical thickness for caudal anterior cingulate (OCD hub),

cortical surface area for posterior cingulate (OCD hub), and

cortical surface area of lateral orbitofrontal cortex (non-

hub). Furthermore, OCD illness duration showed significant

negative correlations with centrality of the cortical surface

area for parahippocampal cortex (healthy control hub), cor-

tical thickness for the frontal pole, cortical surface area for

superior temporal and pericalcarine cortices (OCD hubs),

cortical thickness for inferior parietal lobule, and cortical

surface areas for inferior temporal and cingulate isthmus

cortices (non-hubs).

Table 2 Meta-analysis of global network characteristics and Dice similarity coefficients

logSMD k z P-value 95% CI I2 (%) Q P

OCD versus HC

Global clustering coefficient (total) 0.77 37 –6.94 50.001 0.72 to 0.83 0.01 44.8 0.149

Adults (518 years) 0.79 27 –5.89 50.001 0.73 to 0.85 50.001 26.8 0.418

Adolescents (518 years) 0.66 10 –3.16 0.002 0.50 to 0.85 45.7 16.5 0.058

Modularity (total) 0.82 37 –5.21 50.001 0.77 to 0.89 0.01 43.1 0.194

Adults (518 years) 0.84 27 –4.28 50.001 0.78 to 0.91 0.01 22.3 0.670

Adolescents (518 years) 0.68 10 –2.63 0.009 0.51 to 0.91 54.0 19.1 0.025

Small-worldness (total) 0.92 37 –2.39 0.017 0.85 to 0.98 0.001 26.2 0.886

Adults (518 years) 0.93 27 –1.82 0.069 0.86 to 1.01 50.001 18.1 0.872

Adolescents (518 years) 0.84 10 –1.82 0.068 0.70 to 1.01 50.001 7.2 0.621

Global efficiency (total) 0.98 37 –0.54 0.586 0.91 to 1.05 0.02 38.5 0.358

Adults (518 years) 0.97 27 –0.68 0.494 0.89 to 1.06 10.7 32.6 0.174

Adolescents (518 years) 1.05 10 0.50 0.621 0.87 to 1.26 50.001 5.3 0.809

Dice similarity coefficient (total) 0.48 37 –14.36 50.001 0.43 to 0.53 39.35 58.3 0.011

Adults (518 years) 0.49 27 –11.97 50.001 0.44 to 0.55 45.7 49.6 0.004

Adolescents (518 years) 0.41 10 –9.18 50.001 0.34 to 0.50 50.001 2.9 0.969

OCD patients with versus without lifetime comorbid depressive disorder

Global clustering coefficient 0.89 10 –1.13 0.257 0.73 to 1.09 11.6 10.1 0.344

Modularity 0.90 10 –0.91 0.365 0.72 to 1.13 26.5 11.9 0.217

Small-worldness 0.96 10 –0.44 0.659 0.80 to 1.15 50.001 6.6 0.678

Global efficiency 1.00 10 –0.04 0.966 0.83 to 1.20 50.001 5.8 0.764

Dice similarity coefficient 1.04 10 0.32 0.751 0.84 to 1.28 21.4 13.2 0.155

OCD patients with versus without lifetime comorbid anxiety disorder

Global clustering coefficient 0.99 7 –0.09 0.929 0.79 to 1.25 50.001 5.1 0.531

Modularity 0.96 7 –0.39 0.695 0.76 to 1.20 50.001 1.8 0.934

Small-worldness 1.00 7 0.01 0.993 0.79 to 1.27 3.1 6.6 0.357

Global efficiency 1.03 7 0.24 0.814 0.82 to 1.29 50.001 6.2 0.403

Dice similarity coefficient 1.15 7 0.96 0.338 0.87 to 1.52 31.2 8.3 0.215

Medicated OCD versus unmedicated OCD

Global clustering coefficient 0.95 12 –0.63 0.531 0.82 to 1.11 0.00 11.03 0.441

Modularity 0.94 12 –0.83 0.408 0.8 to 1.09 0.00 8.73 0.647

Small-worldness 0.99 12 –0.08 0.934 0.83 to 1.18 15.25 12.97 0.295

Global efficiency 0.85 12 –1.66 0.097 0.7 to 1.03 28.05 13.32 0.273

Dice similarity coefficient 1.06 12 0.72 0.474 0.91 to 1.24 2.16 6.90 0.807

Correlation coefficient k z P-value 95% CI I2 Q P

Illness duration in OCD

Global clustering coefficient –0.03 32 –0.85 0.393 –0.11 to 0.04 40.13 53.37 0.008

Modularity –0.05 32 –1.32 0.188 –0.12 to 0.02 34.70 48.57 0.023

Small-worldness –0.02 32 –0.67 0.584 –0.10 to 0.05 34.00 46.28 0.038

Global efficiency –0.02 32 –0.59 0.558 –0.07 to 0.04 0.00 20.64 0.921

CI = 95% confidence interval; I2 = total heterogeneity/total variability; k = number of studies included in given meta-analysis; log SMD = log-transformed standardized mean differ-

ence; P = P-value of heterogeneity test; P-value = P-value of random effect model (REML); Q = heterogeneity score; z = z-score.
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Discussion
The current meta-analysis of 37 datasets from 26 sites world-

wide is the largest investigation of structural covariance net-

works in OCD to date. Two main findings emerged. First, we

observed lower clustering, modularity, and small-worldness

of OCD brain structural covariance networks compared with

healthy controls, with community membership analysis con-

firming a less segregated organization of the global structural

covariance network of OCD patients. Second, hub profiling

demonstrated reduced centralities in subcortical volumes of

caudate nucleus and thalamus as well as cortical surface area

of paracentral cortex in OCD. Alterations in hub organiza-

tion were associated with both medication status and illness

duration. These novel findings are important; the first sug-

gests a possible signature of altered brain morphometry in

OCD compared to healthy controls, and the second provides

evidence for OCD-related alterations in trajectories of brain

development and maturation.

Lower clustering, modularity and small-worldness, but nor-

mal global efficiency, are indicative of lower global segrega-

tion, but spared global integration of OCD networks. In

particular, lower modularity might be related to over-connect-

edness of certain nodes and diminished ability of the network

to adapt flexibly (Guye et al., 2010). This finding is consistent

with previous observations of abnormal brain network segre-

gation in functional networks in OCD (Zhang et al., 2011).

Small-worldness relates to an optimal network organization

Figure 4 Meta-analysis of community membership and hubs. (A) Healthy bontrols (HC); and (B) OCD. Spheres represent nodes [= bi-

laterally-averaged values of 33 cortical surface areas (CSAs), 33 cortical thickness (CT), and six subcortical volumes (vol)] comprising the intra-

individual structural covariance network. Larger spheres represent hubs, and differential colours were used to denote the spheres (or network

nodes) segregated as different modules.

Figure 5 Meta-analysis of regional network characteristics (= rank-transformed betweenness, closeness, and eigenvector cen-

tralities). (A) Comparing OCD and healthy controls (HC); (B) comparing medicated OCD with unmedicated OCD; and (C) estimating the

degrees of relationship with illness duration for OCD. CSA = cortical surface areas; CT = cortical thickness.
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that combines regional specialization and efficient global

(Watts and Strogatz, 1998; Latora and Marchiori, 2001;

Lefort-Besnard et al., 2018). Thus, despite intact global effi-

ciency, decreased levels of small-worldness and modularity in

OCD point to a disrupted hierarchical network architecture.

Global network findings were not impacted by medication

status or illness duration. This contrasts with previous research,

which although based on functional MRI data, suggested that

abnormal global network characteristics may depend on psy-

chotropic treatment (Shin et al., 2014). Although it is theoretic-

ally possible that the effects of psychotropic medication on

OCD brain morphology differ in the acute versus chronic stage

of pharmacotherapy so that there the net result over time is one

of no change, there is little evidence to support this idea. In our

view, a more plausible conclusion is that the lower global net-

work segregation found here may represent a possible signature

of altered brain morphometry in OCD. Further research is

needed to confirm this.

The study also found reduced centralities of caudate nu-

cleus and thalamic volumes in OCD compared to healthy
controls. This is in line with our previous multicentre mega-

analysis, which showed increased thalamic volume in OCD

compared to healthy controls, even though only in the

paediatric patients (Boedhoe et al., 2017). Likewise, caudate

nucleus and thalamus showed marked expansion in OCD

and in their unaffected siblings compared to healthy con-

trols, suggesting genetic contributions to altered brain

morphology (Shaw et al., 2015). Of note, meta-analytic inte-

gration of task-related functional MRI studies demonstrated

OCD-specific differences in functional activation of the

caudate nucleus. Similarly, nodal efficiency of the caudate
nucleus was reduced in OCD in a white matter-based struc-

tural connectivity network (Zhong et al., 2014), in line with

a resting state functional connectivity profile that showed

increased intra-subcortical modular connections for caudate

nucleus and thalamus in OCD (Vaghi et al., 2017).

Our data emphasize that alterations in hubs in OCD are

associated with illness duration. This is consistent with pre-

vious work suggesting brain-related changes during the de-

velopment of OCD (van den Heuvel et al., 2016). In

particular, we found that centralities of brain regions includ-

ing the cortical thickness of caudal anterior cingulate as well

as the cortical surface areas for posterior cingulate and lat-

eral orbitofrontal cortices, were associated with longer illness

duration in OCD. As an interface between sensorimotor,

limbic and executive networks, the caudal anterior cingulate

plays a major role in attentional control (Margulies et al.,

2007) and self-referential sensorimotor processing (Jung

et al., 2015; Mao et al., 2017), the posterior cingulate cortex

and connected default mode network supports internally-

directed cognition, participates in the control of arousal

state, and interacts with other brain regions for attentional

modulation and conscious awareness (Leech and Sharp,

2014). Orbitofrontal regions have also previously been

emphasized in OCD. The hub findings reported here point

to OCD-related alterations in trajectories of brain develop-

ment and maturation, particularly in cingulate and

orbitofrontal regions. However, these hypotheses will re-

quire confirmation in longitudinal studies.

This study has some limitations that deserve emphasis.

First, the current study analysed datasets that were extracted

from brain MRI data collected from 26 international re-

search institutions using diverse acquisition parameters

(Boedhoe et al., 2017, 2018), which may have introduced

systematic biases. Nevertheless, our meta-analytical ap-

proach took into account differential site effects. Second, al-

though all brain segmentation results underwent quality

check procedures prior to extraction of numerical values, we

were unable to implement motion correction of structural

images, and it is theoretically possible that estimates of

group differences are inflated by uncorrected motion.

Nevertheless, there is no reason to suspect increased motion

in either group. Third, in the calculation of intra-individual

structural covariance networks, the current study applied the

bilaterally-averaged values of 33 cortical surface area regions

of interest, 33 cortical thickness regions of interest, and six

subcortical volume regions of interest and therefore did not

explore the homologous connectivity between the brain

regions. However, we would like to emphasize that patterns

of brain cortical-subcortical morphological asymmetry in

adult OCD are not significantly different from healthy con-

trols (Kong et al., 2019). Fourth, the current study did not

explore the possible effect of other clinical features such as

the severity of depressive or anxiety symptoms, and IQ

score, on the brain morphological features, because of the

lack of sufficient information. Fifth, this was a cross-section-

al study and any conclusions regarding developmental trajec-

tories are necessarily tentative.

Taken together, this study showed that the structural co-

variance networks of individuals with OCD are less segre-

gated and show a reorganization of brain hubs, compared

to healthy controls. These findings support the hypothesis

that OCD brain abnormalities are best described at the net-

work level and involve alterations in the hierarchical struc-

ture of the brain. The segregation findings here are

important insofar as they suggest a possible signature of

altered brain morphometry OCD, while the hub findings are

useful in emphasizing the importance of OCD-related altera-

tions in trajectories of brain development and maturation,

particularly in cingulate and orbitofrontal regions.
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