79 research outputs found

    Replica And Numerical Evaluation Of Huge Impression Of Inclined Buildings

    Get PDF
    Structural design in rocky areas is more susceptible to seismic conditions compared to structures standing at high altitudes. Depending on the film it differs from different buildings because it is indistinguishable from the surface and the plane surface is tensional laterally bound and does not protect against severe damage when encountering seismic activity. Soil formation areas changed in elevation due to soil degradation. In this study, the performance of two important objects, in an attempt to reverse direction, of sinusoidal soil activity with multiple slope points, 15 °, 20 ° and 25 ° was verified with the model verified by generating the element code defined in the MATLAB standard and using the search engine. Basic STAAD Pro by making a live date test time. From the studies mentioned above, it was observed that as the idea progressed, the stability of the sample increased, due to the thinning of the skin of the short part, and the results obtained from stimulating the sample. The tensile strength on short cuts is about 75% of the scissor build-up. Impact problems are so widespread due to plastics being placed close to these lines, relevant research is needed to measure the effects of various soil slopes

    Mutagenic Potential of Telomeric Repeats and the Role of Werner Syndrome Helicase Protein in Facilitating Telomeric DNA Replication

    Get PDF
    Chromosome termini form nucleoprotein structures called telomeres that consist of tandem repeats of TTAGGG DNA sequences (mammals) and telomeric proteins. Telomeres play a critical role in cell survival and genomic stability. Biochemical studies showed that the G-rich strand of telomeres can fold into secondary DNA structures called G-quadruplexes (G4-DNA), which are thought to impact telomere length regulation and telomeric DNA stability. G4 DNA structures are capable of interfering with DNA synthesis by blocking DNA polymerases in vitro and are proposed to hinder replication in vivo. We cloned telomeric repeats into reporter cassettes on shuttle vectors and replicated them in normal human somatic cells to determine if telomeric repeats induce mutations and deletions due to their ability to fold into G4 DNA structures. We demonstrated for the first time that G-rich telomeric repeats, in spite of their G4 DNA forming ability are stable upon replication in normal human cells. In contrast, ciliate telomeric sequences that form more stable G4 DNA than human telomeric sequences, induce more mutations. Stochastic telomere loss is seen in the premature aging disorder Werner Syndrome, which is caused by loss of the RecQ helicase protein WRN. We hypothesized that WRN deficiency leads to replication fork stalling and collapse due to G4 DNA formed by telomeric repeats resulting in deletions of DNA sequence. Shuttle vectors with a telomeric or control sequence were replicated in U2OS cells deficient or proficient for WRN. Replication of shuttle vectors in normal cells did not influence shuttle vector mutant frequencies, while WRN depleted cells exhibited elevated mutant frequencies for both telomeric and control vectors but the increase was significantly higher for the telomeric vector. We demonstrated that WRN is involved in suppressing mutagenesis in shuttle vectors with telomeric sequences. We are also testing DNA synthesis in plasmids through regions of single stranded DNA containing telomere repeats in WRN proficient and deficient cells. Public health significance: Shortened telomeres are associated with age related diseases such as heart disease, cancer and premature aging disorders. These assays will help us investigate factors that cause accelerated telomere loss with the goal of preventing or delaying disease

    DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia.

    Get PDF
    Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer\u27s vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies

    DNAH6 and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia

    Get PDF
    Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer’s vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies

    Characterizing the morbid genome of ciliopathies

    Get PDF
    Background Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete. Results We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population. Conclusions Our study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies

    ARMC4 Mutations Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry

    Get PDF
    The motive forces for ciliary movement are generated by large multiprotein complexes referred to as outer dynein arms (ODAs), which are preassembled in the cytoplasm prior to transport to the ciliary axonemal compartment. In humans, defects in structural components, docking complexes, or cytoplasmic assembly factors can cause primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease and defects in laterality. By using combined high resolution copy-number variant and mutation analysis, we identified ARMC4 mutations in twelve PCD individuals whose cells showed reduced numbers of ODAs and severely impaired ciliary beating. Transient suppression in zebrafish and analysis of an ENU mouse mutant confirmed in both model organisms that ARMC4 is critical for left-right patterning. We demonstrate that ARMC4 is an axonemal protein that is necessary for proper targeting and anchoring of ODAs

    TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres

    Get PDF
    Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (? 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ? 2.8-3.6 ?(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources

    Utilizing the chicken as an animal model for human craniofacial ciliopathies

    Get PDF
    The chicken has been a particularly useful model for the study of craniofacial development and disease for over a century due to their relatively large size, accessibility, and amenability for classical bead implantation and transplant experiments. Several naturally occurring mutant lines with craniofacial anomalies also exist and have been heavily utilized by developmental biologist for several decades. Two of the most well known lines, talpid(2) (ta(2)) and talpid(3) (ta(3)), represent the first spontaneous mutants to have the causative genes identified. Despite having distinct genetic causes, both mutants have recently been identified as ciliopathic. Excitingly, both of these mutants have been classified as models for human craniofacial ciliopathies: Oral-facial-digital syndrome (ta(2)) and Joubert syndrome (ta(3)). Herein, we review and compare these two models of craniofacial disease and highlight what they have revealed about the molecular and cellular etiology of ciliopathies. Furthermore, we outline how applying classical avian experiments and new technological advances (transgenics and genome editing) with naturally occurring avian mutants can add a tremendous amount to what we currently know about craniofacial ciliopathies
    corecore