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Abstract  

 The chicken has been a particularly useful model for the study of craniofacial 

development and disease for over a century due to their relatively large size, accessibility, and 

amenability for classical bead implantation and transplant experiments. Several naturally 
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occurring mutant lines with craniofacial anomalies also exist and have been heavily utilized by 

developmental biologist for several decades. Two of the most well known lines, talpid
2
 (ta

2
) and 

talpid
3
 (ta

3
), represent the first spontaneous mutants to have the causative genes identified. 

Despite having distinct genetic causes, both mutants have recently been identified as ciliopathic. 

Excitingly, both of these mutants have been classified as models for human craniofacial 

ciliopathies: Oral-facial-digital syndrome (ta
2
) and Joubert syndrome (ta

3
). Herein, we review 

and compare these two models of craniofacial disease and highlight what they have revealed 

about the molecular and cellular etiology of ciliopathies. Furthermore, we outline how applying 

classical avian experiments and new technological advances (transgenics and genome editing) 

with naturally occurring avian mutants can add a tremendous amount to what we currently know 

about craniofacial ciliopathies. 

 

“A box without hinges, key, or lid, yet golden treasure inside is hid.”- The Hobbit 
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Introduction 

Avians as a model for craniofacial development and disease 

There has been a long-standing relationship between the study of craniofacial 

development/disease and the avian model system. The chicken has provided insights into much 

of what is known about craniofacial development. Several seminal experiments performed in 

avian models furthered our understanding of craniofacial growth and patterning. Cranial neural 

crest, the progenitors of anterior facial skeleton and connective tissue, were first observed in the 

chick embryo (His, 1868). In addition to fate mapping the cellular contributions to the 

craniofacial complex (Couly et al., 1993), chickens have been used to identify the extent of 

neural crest cell plasticity (Couly et al., 2002; Couly et al., 1996; Couly et al., 1998; Köntges and 

Lumsden, 1996; Le Douarin et al., 2004), explore the molecular and cellular basis for species-

specific facial patterning (Schneider and Helms, 2003; Tucker and Lumsden, 2004) and 

determine the requirements for tissue-tissue interactions during craniofacial development (Chong 

et al., 2012; Creuzet et al., 2004; Creuzet et al., 2006; Etchevers et al., 1999; Hu and Marcucio, 

2009a).  Furthermore, several naturally occurring avian mutants have been utilized to understand 

pathological conditions (Robb et al., 2011). Here, we review and compare two of the most 

utilized avian models of craniofacial disease (talpid
2
 and talpid

3
) and highlight what they have 

revealed about the molecular and cellular etiology of a disease class that has a profound affect on 

craniofacial development: ciliopathies.  

 

The avian embryo has been highly relevant for human craniofacial development due to 

the highly conserved organization and growth of the facial prominences between avians and 
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mammalian species (mouse and human) during craniofacial development (Fig. 1). Facial 

development, regardless of species, begins with the formation and growth of five distinct facial 

prominences: a singular frontonasal prominence (FNP), paired maxillary prominences (MXP) 

and paired mandibular prominences (MNP) (Brugmann et al., 2006) (Fig. 1A-I). In humans, the 

FNP gives rise to midline features including the forehead, the middle of the nose, the philtrum of 

the upper lip, and the primary palate. In avians the FNP is also present and gives rise to the upper 

beak and primary palate (pre-maxilla). The other more lateral component of the frontonasal 

prominence, the lateral nasal prominences, contributes to the sides (alae) of the nose in humans 

and sides of the beak in avians. The MXP contributes to the upper lip, upper jaw and secondary 

palate in humans, and the lateral aspects of the upper beak and secondary palate in avians. In 

both humans and avians the MNP gives rise to the lower lip/beak, jaw, and the anterior two-

thirds of the tongue (the 3
rd

 and 4
th

 branchial arches contribute to the posterior third and the 

intrinsic glossal musculature comes from the occipital somites (Parada et al., 2012)). The tissues 

that compose the facial prominences (surface ectoderm, neural crest, mesoderm and endoderm) 

are also highly conserved between avians and other mammalian species (mice and humans). This 

degree of morphological and cellular conservation has propelled the chicken into the forefront of 

animal models for human craniofacial disease, specifically craniofacial ciliopathies: a rapidly 

growing class of craniofacial anomalies caused by a defect in the structure or function of primary 

cilia. 

 

Craniofacial ciliopathies and the avian model system 

Primary cilia are microtubule-based organelles that dynamically extend from the cell 

surface (Fig. 1J, K). In the last decade, the cilium has gained increasing popularity due to their 
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nearly ubiquitous presence on various cell types, their role as regulators of developmental 

signaling pathways (e.g., Sonic Hedgehog) and association with a number of syndromes 

collectively known as ciliopathies (Badano et al., 2006; Eggenschwiler and Anderson, 2007). 

Currently there are over 100 conditions that are either known, or likely ciliopathies (Baker and 

Beales, 2009). When evaluating these disorders, approximately 30% of the conditions, including 

Oral-facial-digital syndrome, Joubert syndrome, Bardet-Biedl syndrome, Meckel-Gruber 

syndrome, Sensenbrenner Syndrome (Cranioectodermal dysplasia) and Ellis-van Creveld 

syndrome (Zaghloul and Brugmann, 2011) (Table 1), are primarily defined by their craniofacial 

phenotype. These craniofacial ciliopathies frequently present with some combination of 

craniosynostosis, micrognathia, midfacial dysplasia and/or cleft lip/palate, thus significantly 

impacting the development of all facial prominences (Fig. 1L).  In recent years several animal 

models, from various species, have been identified for the study of craniofacial ciliopathies 

(Table 1). Perhaps one of the most exciting discoveries focused on the identification of two avian 

models for human craniofacial ciliopathies. In the next section we discuss these mutants and how 

the unique features of the avian model system have contributed to understanding the etiology of 

craniofacial ciliopathies. 

 

The talpids 

 The talpid mutants (talpid, talpid
2
, talpid

3
) are three distinct, autosomal recessive avian 

mutants with the shared phenotypes of polydactyly and severe craniofacial malformations. These 

mutants received the name “talpid” due to their polydactylous phenotype, reminiscent of the 

forelimbs of moles, shrews, and desmans belonging to the Talpidae family. The original talpid 

mutant was identified by Randall Cole in 1942. talpid had severe craniofacial defects, including: 
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shortened inferior maxilla and general retarded growth of the facial structures (Cole, 1942). 

Sadly, before gene identification was possible, the original talpid went extinct. Years later, 

however, two separate avian lines, existing on different continents, with similar phenotypes to 

talpid would emerge. Aptly named talpid
2
 (ta

2
) and talpid

3
 (ta

3
), these two lines would serve as 

staples in the developmental biology communities for the study of limb and craniofacial 

development for the next half century. In recent years, with the advances in whole genome 

sequencing, the causative genetic mutations for both lines were identified, significantly 

increasing their value as animal models. 

 

The genetic, molecular and cellular etiology of ta
2
 

 ta
2
 was identified in 1953 by Isador Michael Lerner, and more completely described by 

Ursula Abbott, Lewis Taylor, and Hans Abplanalp in 1960 at the University of California, Davis. 

Like the original talpid, ta
2
 was identified as an embryonic lethal, autosomal recessive mutation. 

The original phenotypic description of ta
2
 noted that the mutants had shortened wing/leg bones 

accompanied by severe polysyndactyly, a shortened vertebral column, retarded feathering, and 

reduced MXPs. Additionally, Abbott noted an overall reduction in body size and a failure of the 

ventral body wall to completely close, causing subsequent protrusion of the internal viscera. 

With respect to craniofacial development, it was also noted that the position of the egg tooth was 

ventralized and that mutants often had crossed beaks (Abbott et al., 1960). Recent studies have 

provided a more detailed description of the craniofacial defects present in ta
2
. Combined, these 

studies found that ta
2 

mutants have: a rounded head, shorter and broader FNP that eventually 

results in a shortened upper beak, bilateral clefting, hypoplastic MXPs, incomplete fusion of the 

primary palate, hypoglossia, and integumentary outgrowths on the developing jaw that resemble 



 7 

tooth-like structures (Brugmann et al., 2010; Chang et al., 2014; Harris et al., 2006; Schneider et 

al., 1999).  While no obvious morphological differences are observed at HH16, the oral cavity 

and MXPs of ta
2 

mutants are misshapen at HH21 (Fig. 2A, B, data not shown). This difference 

becomes more pronounced at HH25 along with differences in the morphology of the FNP (Fig. 

2D, E).  By day 7, the FNP and MXP have fused in control embryos and outgrowth of the upper 

beak has begun (Fig. 2G). In contrast, the FNP and MXP have yet to fuse in ta
2
 embryos and 

there is little outgrowth of the upper beak (Fig. 2H). Additionally, the tongue of ta
2
 mutants is 

smaller (hypoglossia; Fig. 2J, K). By day 10, the upper beak is significantly shorter and wider 

than that of controls, tooth-like structures are present on the upper and lower beaks and the palate 

remains patent (Fig. 2M, N, P, Q). The recent identification of the causative genetic mutation for 

the ta
2 

mutant has allowed us to begin to understand the molecular and cellular origins of the 

craniofacial defects present in this mutant.  

Despite being a model for countless developmental studies of limb and facial 

development, there were limitations to the utility of the ta
2
 because the genetic cause was 

unknown. The advancement of genomic technology as well as improved coverage of the chicken 

genome alleviated these limitations. Using a 60K SNP array, whole genome sequencing, and 

cDNA sequencing, a telomeric region on GGA1q was identified to have at least a 3-fold higher 

ratio of ta
2
-specific SNPs over any other interval. Subsequent analysis of the line confirmed a 19 

bp deletion in the 3’ end of exon 32 within C2CD3 (C2 calcium-dependent domain containing 3) 

(Chang et al., 2014; Robb et al., 2011). C2CD3 encodes a protein that is universally conserved in 

organisms that assemble centrioles or cilia. Whereas the function of C2CD3 remains largely 

elusive, various studies indicate that the protein localizes near the distal tip of centrioles, 

physically interacts with other centriolar and IFT proteins, and is essential for ciliogenesis 
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(Hoover et al., 2008; Thauvin-Robinet et al., 2014; Ye et al., 2014). The deletion in C2CD3 in 

ta
2 

embryos correlated with a decrease in the number of cells extending a primary cilium. Both 

SEM and immunofluorescence confirm that approximately 20% of ta
2
 cells extend a cilium, in 

contrast to approximately 70% in control embryos (Chang et al., 2014). Taken together, these 

results were the first to give a genetic and cellular etiology to the long utilized ta
2
 mutant.  

While various studies have reported aberrant SHH expression in the ta
2 
mutant (Agarwala 

et al., 2005; Harris et al., 2006; Schneider et al., 1999), changes in SHH ligand expression, as 

well as expression of downstream targets, are not consistent across organ systems and appear to 

occur in a tissue-specific manner (Chang et al., 2014). For example, SHH ligand expression is 

expanded in the FNP, yet decreased in other prominences and cranial domains (Fig. 3). Despite 

increased SHH ligand expression, PTCH1 expression is significantly reduced in the FNP. These 

data suggest that the loss of cilia in facial tissues causes tissue specific changes to SHH 

expression and canonical SHH pathway activity. Whereas these inconsistent expression changes 

were the source of much confusion during the early study of the mutant, classification of the ta
2
 

as ciliopathic has helped shed light on how such a result is possible. 

The mechanisms through which the primary cilium affects Shh signal transduction has been 

the subject of extensive research over the last decade. In regard to the Shh pathway, functional 

primary cilia are required for the proper processing of the downstream transcription factors of the 

pathway, the GLI proteins. Full-length GLI proteins (GLIFL) are processed into either a full-

length activator (GLIA) or a cleaved repressor (GLIR) (Haycraft et al., 2005), and the ratio of 

GLIA to GLIR determines net Shh pathway activity. Evaluation of the ta
2
 facial prominences 

and limb buds revealed significant and consistent increases in the levels of full-length GLI3A, 

thus skewing the GLIA to GLIR ratio and supporting the hypothesis that increased GLI3A 
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activity is the cause of the ta
2
 facial phenotypes. These findings were in line with what was 

known about the molecular etiology of ciliopathies, as several ciliary mutants exhibit disruptions 

in GLI processing and skewed GLIA to GLIR ratios (Haycraft et al., 2005; Huangfu and 

Anderson, 2005; Liu et al., 2005; May et al., 2005).  

Cell behaviors and processes are also disrupted in ta
2
 mutants. Several ciliary mutants exhibit 

aberrant cell migration (Osborn et al., 2014; Tabler et al., 2013; Tobin et al., 2008). In ta
2 

mutants, cranial neural crest cells (CNCCs) fail to migrate properly. The dispersion of CNCCs is 

significantly increased, and they exhibit decreased directional persistence (Schock et al., 2015). 

Furthermore ta
2
 mutants have cell differentiation defects. There is an increase in cartilage both in 

the face and in the limbs of ta
2
 mutants (Schock et al., 2015). The precise molecular mechanisms 

causing these migration and differentiation defects remain unknown. Continued study of ta
2
 

mutants will undoubtedly elucidate the intricacies of how cilia function during these cellular 

processes. 

  

The genetic, molecular and cellular etiology of ta
3
 

 

ta
3
 arose as a spontaneous, recessive, embryonic lethal mutation in a chicken flock kept at 

Wye College, Kent, UK. As part of an undergraduate study, Donald Ede, a limb developmental 

biologist who had trained under the famous developmental biologist C.H. Waddington, noted 

that there was reduced hatchability in an avian flock at the college. Ede and his student, W.A. 

Kelly, determined that the reduced hatchability was due to the widespread presences of a 

recessive, lethal allele in the flock. Further examination of this mutant revealed a phenotype 

similar to that of Cole’s original talpid, particularly the formation of large polydactylous paddle 

shaped limbs, thus, the mutant was named talpid
3
. Recent studies have provided a more detailed 
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description of the developmental anomalies present in the ta
3
. Despite the situs of the viscera and 

turning/patterning of the heart tube being normal (Stephen et al., 2014), the anatomy of the ta
3
 

body is severely dysmorphic. The ta
3
 body axis is shortened (Stephen et al., 2015), the lungs are 

hypoplastic and the liver is fibrotic and cholestatic (Davey et al., 2014). Skeletogenesis is 

aberrant (Macrae et al., 2010), embryos exhibit unusual vascular abnormalities (Davey et al., 

2007) and development and differentiation of the central nervous system is impaired (Buxton et 

al., 2004; Stephen et al., 2013). With respect to craniofacial abnormalities, ta
3
 embryos exhibit a 

holoprosencephalic-like phenotype: apposition of the eyes at the ventral midline (hypotelorism) 

with the reduction and anterior displacement of the FNP (Ede and Kelly, 1964a; Ede and Kelly, 

1964b). By HH21, there already are significant morphological changes in the developing face of 

ta
3
 mutants. The FNP is shifted anteriorly and MXPs reside near the midline (Fig. 2A, C). At 

HH25, the MXPs have fused with each other and the FNP remains anteriorly displaced and 

hypoplastic (Fig. 2D, F). At day 7, the MXP and MNP, which are also reduced at the midline, are 

displaced posteriorly below the eyes, and MXPs fuse medially (Fig. 2G, I). Furthermore, 

complete loss of the tongue (aglossia) is also apparent at this stage (Fig. 2J, L). By day 10, the 

anteriorly displaced remnant of the upper beak fails to project, while the lower jaw is narrow and 

described as ‘peg-like’ (Fig. 2M, O). Ectopic lenses derived from, or connected to, the 

hypophyseal duct also frequently form at the facial midline (Fig. 2O) and the medial fusion of 

the MXPs splits the oral cavity in two (Fig. 2P, R). 

Similar to the ta
2
, the ta

3
 has been a heavily utilized model within the developmental 

biology community despite the genetic cause of the mutation remaining a mystery. Linkage 

analysis identified a candidate region on GGA5, and subsequent sequencing of cDNA clones 

identified an insertional mutation of a single thymine residue, resulting in frame-shift and 



 11 

premature stop codon in a previously uncharacterized gene, KIAA0586 (Davey et al., 2006). 

KIAA0586, which encodes a 1533aa protein containing several coiled-coil regions and a proline-

rich region, was not otherwise homologous to any other gene or gene family. The KIAA0586 

protein, eventually named TALPID3, was isolated in an early centrosomal proteome analysis 

(Andersen et al., 2003) and was confirmed to be a centrosomal protein (Yin et al., 2009) that 

normally localized in a ring at the distal end of the basal body (Kobayashi et al., 2014). The 

TALPID3 protein was shown to be required for docking of the basal body to the cell surface 

(Yin et al., 2009) prior to ciliogenesis (Kobayashi et al., 2014) and has also been implicated in 

centrosome migration (Stephen et al., 2013), control of centrosome length (Stephen et al., 2015) 

and formation of centriolar satellites (Kobayashi et al., 2014). Loss of the TALPID3 protein, in 

various model species, resulted in a loss of cilia (Bangs et al., 2011; Ben et al., 2011; Yin et al., 

2009), both non-motile and motile (Stephen et al., 2013). 

Molecularly, most of what is known about the ta
3
 has been gained from studies in the 

limb and neural tube. Despite normal expression of SHH in the limb, expression of down-stream 

targets including, PTCH1, PTCH2 and GLI1, are all down-regulated (Lewis et al., 1999). In 

contrast, there is a complete loss of pathway activity in the neural tube, with expression of both 

SHH and its targets being down-regulated (Fig. 3). The developing craniofacial complex more 

closely resembles the expression patterns seen in the neural tube. In the head there is a loss of 

SHH and PTCH1 expression in the ventral forebrain and developing face (Buxton et al., 2004; 

Davey et al., 2006). 

As previously mentioned, loss of primary cilia frequently results in altered ratios of GLIA 

to GLIR. Western blot analysis revealed that post-translational processing of GLI3 was indeed 

disrupted in the ta
3
 (Davey et al., 2006). In both the limb and the head there was a significant 
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increase in nuclear GLI3A, but no change in GLI3R.  Thus, as was reported in the ta
2
, these data 

suggest that the primary molecular defect in the ta
3
 was aberrant Shh pathway activity resulting 

from a failure of modification/processing of the GLI3 protein. 

Whereas CNCCs have not been specifically examined in the ta
3 

as in ta
2
, the limb 

provided a basis for understanding various cell behaviors, including migration and 

differentiation. Several groups have used the ta
3
 limb to determine that there was a decrease in 

cell death, changes in cell proliferation, abnormal cell adhesiveness and migration during limb 

development (Ede and Agerbak, 1968; Francis-West et al., 1995; Hinchliffe and Ede, 1967; 

Hinchliffe and Thorogood, 1974; Izpisua-Belmonte et al., 1992). Furthermore, there was a 

general loss of polarity in both the cell and developing tissues (Stephen et al., 2015). Cell 

differentiation was also affected, particularly during skeletal development. Endochondral 

cartilages failed to ossify; however, membranous bone of the clavicle and head underwent 

ossification (Macrae et al., 2010).  

 

Comparison of the ta
2
 and ta

3
 avian ciliopathic mutants  

While the ta
2
 and ta

3
 have been thought of together because of their nomenclature and 

polydactylous phenotypes, no direct comparison has ever been made between the two. Here we 

highlight that although these mutants have similar limb phenotypes, their craniofacial defects are 

surprisingly different. ta
2
 has a relatively mild craniofacial phenotype when compared directly to 

ta
3
 (Fig. 2). The FNP and MXP of ta

2
 are dysmorphic and fail to fuse properly, resulting in a 

cleft primary palate. In addition, primitive teeth-like structures are present on the FNP, and 

whereas the MNP is relatively normal, the tongue is underdeveloped. Conversely, in ta
3
 the 

midline is collapsed due to an underdevelopment and anterior shifting of the FNP. This shift 
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prevents the FNP and MXP from ever fusing and results in a direct fusion of the MXPs across 

the midline. With respect to the MNP, ta
3
 mutants have a narrowed and “peg-like” lower beak 

and aglossia. Thus, the highly distinctive phenotypes between these two mutants allow for the 

differential exploration of various cellular, molecular and ciliary-based processes during 

craniofacial development. 

Despite the causative genes being different between ta
2
 and ta

3 
the mechanism by which 

ciliogenesis is impaired is surprisingly similar. The ta
2
 mutation is caused by a premature 

truncation of C2CD3, a ciliary protein that localizes to the distal centriole and is known to 

associate with OFD1, IFT88 and other transition zone proteins (Schock et al., 2015; Thauvin-

Robinet et al., 2014; Ye et al., 2014). In these mutants, the mother centriole fails to dock to the 

ciliary vesicle and cell membrane, preventing ciliogenesis (Chang et al., 2014). Similar to 

C2CD3, TALPID3 localizes to the extreme distal end of the centriole and loss of function 

prevents centriole docking to the ciliary vesicle and cell membrane (Yin et al., 2009). TALPID3, 

however, is known to localize in a ring-like structure at the distal centriole associated with the 

CP110-containing protein complex (Kobayashi et al., 2014). Given the similarities between 

ciliary localization and the cellular mechanisms for loss of ciliogenesis in these two mutants, it is 

surprising that the two craniofacial phenotypes differ so greatly. This phenotypic variation could 

be due to differential spatiotemporal expression or specific functional roles of these ciliary genes 

during signal transduction.  

On a molecular level, both ta
2
 and ta

3
 have aberrant Shh pathway activity (Fig. 3). This is 

not surprising given the relationship between the Shh pathway and primary cilia; however, there 

are pronounced differences between the two mutants with respect to pathway activity and 

associated craniofacial phenotype. In the ta
2
, the FNP is reduced in length, yet significantly 
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wider. An expanded midline is classically associated with a gain of Shh function (Hu and Helms, 

1999); and thus, it was not surprising to see an increase in SHH expression (Fig. 3A, B) and 

increase in GLI3A in the developing FNP of ta
2
 mutants (Chang et al., 2014). Interestingly, 

PTCH1 expression is decreased in the FNP, despite the increase in SHH expression. This 

suggests that there is an uncoupling of the Shh pathway whereby the adjacent cells cannot 

properly interpret the initial ligand signal. Conversely, there is a collapse of the facial midline 

(reduced FNP) in the ta
3
.  A reduced midline is classically associated with a loss of Shh function 

(Cordero et al., 2004). Therefore, reduced expression of SHH (Fig. 3A, C) and its targets in the 

developing head is not surprising, but increase in GLI3A in the ta
3
 is. It is not clear what causes 

the dichotomy in SHH activity between these two mutants, especially given the similar cellular 

ciliary phenotype. Gaining a greater understanding of the roles of C2CD3 and TALPID3 during 

Shh signal transduction will likely improve our understanding of these data. 

Examining distinct domains of SHH expression in both ta
2
 and ta

3
 mutants could also 

help to elucidate the role of primary cilia during Shh signal transduction. Typically SHH is 

expressed in both ‘primary’ (notochord) and ‘secondary’ domains (FEZ, zona limitans 

intrathalamica (ZLI) and the ventral floor plate). Expression in secondary domains requires 

induction by a primary source of SHH (e.g., expression in the telencephalon induces expression 

in the FNP) (Marcucio et al., 2005). While expression in primary regions remains relatively 

normal, induction of SHH expression in some secondary regions is disrupted in both the ta
2
 and 

ta
3
 mutants (Buxton et al., 2004; Chang et al., 2014) (Fig. 3D-I), suggesting a role for cilia in 

induction of a secondary signaling domain. Given the ease of embryonic manipulation and 

ability to perform tissue transplants, the talpids are perhaps an ideal model to further examine 

topics such as this. It should be noted; however, that while there are many alterations in Shh 
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pathway activity, it is unlikely that the Shh pathway is solely responsible for the entirety of 

phenotypes in these two mutants. Other signaling pathways such as Wnt, Notch, and PDGF-A 

have been associated with primary cilia and are known to play key roles during craniofacial 

development (Brugmann et al., 2007; Corbit et al., 2008; He and Soriano, 2013; Jiang et al., 

1998; Schneider et al., 2005; Stasiulewicz et al., 2015). Further examination of both ta
2
 and ta

3
 is 

necessary to determine how these pathways are affected in these mutants. 

 

Using the talpids as models for human craniofacial ciliopathies 

While it was purely serendipitous that both existing talpid models were determined to be 

ciliopathic in nature, it was almost kismet that shortly after the causal genes were identified in 

both mutants, mutations in their human orthologs were shown to be linked to human ciliopathies 

(Roosing et al., 2015; Thauvin-Robinet et al., 2014). The benefit to having an avian model for a 

ciliopathy is significant. The ubiquitous nature of the primary cilium make many ciliopathies 

early embryonic lethal. Mutations of this nature are difficult to study as they are frequently 

resorbed before the embryo can be harvested or studied. The external, in ovo development of 

chicken embryos, rather than the in utero development of mammals, make chickens one of the 

most informative models for severe congenital anomalies. Mutant chicken embryos remain in the 

egg, and this allows for an assessment the embryonic phenotype at anytime. Thus, the discovery 

of the talpids as two distinct models for craniofacial ciliopathies is a promising step in 

determining the molecular and cellular etiology of these syndromes, as well as exploring possible 

avenues for therapeutic treatment. 
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ta
2
 as a model for human Oral-facial-digital syndrome (OFD) 

 

Very recently ta
2
 was identified as a possible disease model for Oral-facial-digital 

syndrome (OFD) (Schock et al., 2015). OFD is a ciliopathy characterized by oral-facial 

abnormalities including cleft lip/palate, broad nasal root, dental anomalies, micrognathia and 

glossal defects. In addition, these patients have several other characteristic abnormalities typical 

of a ciliopathy including polysyndactyly, polycystic kidneys and hypoplasia of the cerebellum. 

There are 14 different subtypes of OFD. While each subtype has phenotypes that are unique, all 

subtypes share the common core phenotypic characteristics.  

To date, there are six different genes and one open reading frame that have been 

identified in OFD patients: OFD1, C2CD3, TCTN3, DDX59, SCLT1, TBC1D32, and C5orf42. 

These genes have been implicated in regulating the Shh pathway and/or ciliogenesis (Hoover et 

al., 2008; Ko et al., 2010; Reiter and Skarnes, 2006; Shamseldin et al., 2013; Singla et al., 2010; 

Tanos et al., 2013). As discussed previously, the causal mutation for ta
2 

is a 19bp deletion in 

C2CD3, one of the genes identified in OFD patients (Hoover et al., 2008; Thauvin-Robinet et al., 

2014; Ye et al., 2014). The phenotypic presentation of the ta
2 

encompasses the core phenotypes 

(craniofacial and other) present in human OFD patients, including cleft lip/palate, ectopic teeth, 

hypoglossia, polydactyly, polycystic kidneys, and a hypoplastic cerebellum. Biochemically, it 

has been shown that C2CD3 and OFD1 co-localize to the same region of the primary cilium 

(distal centriole) and are able to physically interact in mammalian cells. This physical interaction 

is conserved in chicken (Schock et al., 2015). The truncation of C2CD3 in the ta
2 

impedes the 

interaction between C2CD3 and OFD1. Given these striking similarities between ta
2
 mutants and 

OFD patients, the ta
2 

can now be classified as a bona fide disease model for OFD. As such, ta
2 

can be used explore the molecular and cellular origins of OFD. Additionally, avian model 
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systems provide a unique opportunity to test potential therapies, as the embryos is easily 

accessible and susceptible to drug treatment and modification of gene expression (via 

electroporation, virus exposure or bead implantation). 

 

ta
3
 as a model for human Joubert syndrome (JS) 

 

Mutations in the human ortholog of TALPID3 have recently been associated with the 

ciliopathy Joubert Syndrome (JS) (Bachmann-Gagescu et al., 2015; Roosing et al., 2015; 

Stephen et al., 2015) which is characterized by the presentation of core symptoms including 

molar tooth sign of the midbrain-hindbrain junction, hypotonia, ataxia and intellectual 

disabilities. Craniofacially, these patients frequently present with a prominent forehead, high 

rounded eyebrows, epicanthal folds, ptosis, upturned nose with evident nostrils, hypotelorism 

and an open mouth with protruding tongue (Baala et al., 2007; Delous et al., 2007; Maria et al., 

1999; Zaghloul and Katsanis, 2010). Currently, there are over twenty different subtypes of JS, 

defined by distinct genetic mutations and the presence of the core symptoms. To date, over 

twenty different genes have been associated with JS, and most, if not all of them, have been 

implicated in the ciliogenesis and or regulating the Shh pathway. For patients with TALPID3 

mutations, most have been identified to have biallelic mutations, which frequently include one 

‘common’ rare variant (c.428delG).  It is currently unclear if the patients have a total loss of 

TALPID3 function (as in ta
3
 mutants) or if they are hypomorphic. 

The defining symptom of JS is a failure of axonal projections from the cerebellum. 

Whether this is due to a failure of cell polarity, tissue specific requirement for TALPID3 or 

aberrant Shh signaling remains to be understood. With the new knowledge of the ta
3
 as a bona 

fide model for JS, we can now examine JS phenotypes and their underlying cellular and 
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molecular etiology. Currently CRISPR/Cas9 technology is being utilized to uncover additional 

information regarding the function of TALPID3 in JS. 

 

 

Other avian models with craniofacial phenotypes 

 

While the talpids have been the most well studied of the avian mutants, it should not be 

overlooked that several additional mutant lines with craniofacial phenotypes, yet unknown 

genetic causes, exist. It should be noted that the number of facilities maintaining these valuable 

resources are few in number. Currently, only nine academic institutions actively maintain 

established genetic lines in the United States (Delany, 2004), while in Europe four additional 

institutions, The Roslin Institute, Pirbright Institute, Uppsala University and INRA, maintain 

lines of developmental significance. Here we highlight three mutant lines with craniofacial 

phenotypes similar to that of ta
2
 and ta

3
; diplopida-4 (Taylor and Gunns, 1947), coloboma 

(Abbott et al., 1970) and cleft primary palate (Abbott and MacCabe, 1966) . 

 

diplopodia-4 (dp-4), coloboma (co) and cleft primary palate (cpp) 

 diplopodia-4 (dp-4) is one of five mutants that have all been grouped together under the 

“diplopodia” title due to similar limb and craniofacial phenotypes (Robb et al., 2011). Two of the 

diplopodia lines, dp-2 and dp-5, are extinct, but the remaining three lines continue to be used for 

study. dp-4 mutants are characterized by truncated extremities, exposed viscera, short stature, 

preaxial polydactyly, a shortened upper beak, and mild to severe cleft palate. The causative gene 

is unknown, but the inheritance is sex-linked recessive and mapping has identified a region on 

the p-arm of the Z chromosome (Robb et al., 2011). Phenotypically dp-4 has craniofacial 

characteristics similar to both ta
2
 and ta

3
.
 
 Similar to ta

2
, early dp-4 embryos can be identified by 

non-polarized limb buds (an early indication of polydactyly), a narrowed stomodeum and 
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dysmorphic MXPs (Fig. 4A, F). At day 7, the FNP and MXPs in the dp-4 have yet to fuse and 

the MNP is narrowed (Fig. 4B, G). By day 10, dp-4 mutants have a shortening of the upper beak 

with cleft primary palate, similar to ta
2
, their lower beak is narrowed and ‘peg-like’ and they 

exhibit hypo/aglossia, similar to ta
2
 and ta

3
 (Fig. 4C-E, H-J). 

The coloboma mutant (co) was first described by Ursula Abbott in 1970. co is an 

embryonic lethal, sex-linked recessive mutant with limb and craniofacial defects. While the 

causative gene has yet to be identified, the co trait has been mapped to the p-arm of the Z 

chromosome (Robb et al., 2011). The craniofacial phenotype in co mutants can range from mild 

to severe cleft palate and manifests early in craniofacial development. There are early 

morphological changes in all facial prominences of co mutants. At HH25 the FNP is reduced and 

dysmorphic (Fig. 4A, K). At day 7, the FNP and MXP failed to fuse and the FNP is severely 

hypoplastic and displaced slightly anteriorly, similar to what is observed in ta
3
 (Fig. 4B, L). At 

day 10, the cleft primary palate is obvious and the hypoplastic FNP fails to occlude with the 

MNP, leading to skewed MNP outgrowth (Fig. 4C, D, M, N). Hypoglossia is also evident in 

these mutants (Fig. 4E, O). 

 cleft primary palate (cpp) mutants were first found among the stocks of scaleless mutants 

at UC Davis in 1966. Despite the dramatic phenotype, there has been surprisingly little study of 

this mutant, save the original characterization by Ursula Abbott and one paper examining 

mechanism of beak outgrowth (MacDonald et al., 2004; Yee and Abbott, 1978). While a gene 

has yet to be identified for cpp, the mode of inheritance is autosomal recessive, with embryonic 

lethality, similar to that of ta
2
 and ta

3
. These mutants have a striking craniofacial phenotype 

characterized by a recessed and upturned FNP. At HH21, cpp mutants are phenotypically 

indistinguishable from control embryos (data not shown); however, by HH25 there are subtle 



 20 

changes in the morphology of the FNP of cpp mutants that resemble ta
3
 (Fig. 4A, P). At day 7, 

the FNP remains hypoplastic and broad, and does not fuse with the MXPs (Fig. 4B, Q). By day 

10, the upper beak is anteriorly displaced and highly dysmorphic, lacking any form of normal 

structure (Fig. 4C, D, R, S). Interestingly, the MNP remains unaffected in this mutant, as both 

the mandible and tongue are comparable to that of control embryos (Fig. 4E, T).  

Together, these mutants have unique and severe craniofacial phenotypes, partially similar 

to what is observed in the ciliopathic mutants, ta
2
 and ta

3
. It is possible that one or more of these 

avian mutants may be yet another model for a human ciliopathic condition. Alternatively, they 

could be models for other human diseases. Given what we have learned about craniofacial 

development and human ciliopathies from the ta
2
 and ta

3
, further investigation into the genetic, 

cellular, and molecular etiologies of these avian mutants will likely provide valuable insights into 

craniofacial development and human disease in general.  
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The future of avian based craniofacial studies: combining classical techniques with modern 

technology 

 

Although the chicken model system has many experimental advantages, its usefulness 

has previously been limited by the lack of genetics. Compared to mouse, which has undergone 

eight genome assemblies, the chicken has only undergone four. Thus, the chicken genome has 

several gaps making whole genome and whole exome sequencing difficult. The lack of full 

genome coverage also means the identification of causative mutations will take a significantly 

longer time in chicken than in models that have more thoroughly covered genomes. Furthermore, 

there are severe limitations with respect to animal husbandry. Individual labs are most likely 

unable to dedicate the space, personnel, and resources required to maintain a flock of transgenic 

chickens. Despite these limitations, improvements in technology are allowing for increased use 

of the chicken in a genetic context. Recent high-density SNP-typing efforts have improved 

linkage map resolution (Groenen et al., 2009) and currently a 60K SNP chip is in use that allows 

for fine-scale linkage and association mapping (Dodgson et al., 2011).  

Even with the genomic limitations, chickens have tremendous experimental utility. 

Chicken embryos have been classically utilized in “cut and paste” transplant experiments, in 

which specific donor tissues are transplanted into a host environment in order to test their 

developmental potential or function. While many tissues can be transplanted, ones especially 

relevant for craniofacial development are the dorsal neural tube (Fig. 5A), the frontonasal 

ectodermal zone (FEZ), and endoderm (Couly et al., 2002; Hu and Marcucio, 2009b; Schneider 

and Helms, 2003). Dorsal neural tube explants between control and talpid
2
 embryos have been 

particularly useful in the pursuit of understanding tissue-specific requirements of primary cilia 
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during neural crest migration (Schock et al., 2015). Furthermore, transplant experiments of this 

nature could also be useful for understanding the role of primary cilia in tissue-tissue 

interactions.   

 Chicken embryos have also been widely and successfully used for gene over-expression 

and knockdown studies. There are several methods used to alter levels of gene expression in 

avians. The most common transient over-expression method particular to the avian model system 

has been the viral Replication-Competent ASLV long terminal repeat with a Splice acceptor 

(RCAS) system (Hughes, 2004), although the pCAGGS vector has also been widely successful, 

particularly in studies of the neural tube and limb. Likewise, transient transfections with siRNA 

expressing constructs (Das et al., 2006) and morpholinos, via in ovo electroporation, have also 

been used in chick to knockdown a gene in both a spatially and temporally restricted manner 

(Nakamura et al., 2004) (Fig. 5B). Another commonly applied technique to the chick model 

system is the application of Heparin acrylic or Affi-gel blue beads soaked with growth factors 

(i.e. FGFs, BMPs, or SHH). These beads can be placed at specific locations on the embryo to 

locally manipulate signaling pathways (Fig. 5C). These techniques have been frequently applied 

to discern the molecular mechanisms driving craniofacial morphogenesis (Abzhanov and Tabin, 

2004; Hu et al., 2003; Lee et al., 2001; Marcucio et al., 2005; Schneider and Helms, 2003). 

Techniques such as these could serve particularly useful when exploring how loss of primary 

cilia affects signaling pathways. Applying beads soaked in SHH protein (Shh-N) or small 

molecules that block the SHH pathway (cyclopamine) could shed light on how transduction of 

the SHH is altered in Oral-facial-digital syndrome (talpid
2
) or Joubert syndrome (talpid

3
). Using 

locally applied exogenous factors to manipulate signaling pathways within mutant cells would 

not be feasible in other species.  
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Perhaps the most exciting technological advancement affecting the use and potential of 

the avian model system is the advent of transgenic chickens. Stable germ-line transgenic chicken 

flocks expressing eGFP, mCherry and other fluorescent markers, either ubiquitously (McGrew et 

al., 2004) or under tissue-specific reporters (Balic et al., 2014), are available. Specific flocks, 

such as the Roslin Green eGFP line (also known as Glo-chicks (Fig. 5A), available in the US 

through Susan Chapman at Clemson University), H2B-YFP, Tie1-GFP and PGK-mCherry 

(available through the Ozark egg company) or Tg(PGK1:H2B-chFP) quails (Huss et al., 2015) 

can be widely used by developmental biologists, and make it possible to generate chimeras 

between fluorescent and non-fluorescent embryos (McGrew et al., 2008) (Fig. 5A). Furthermore, 

current advances in the field of avian transgenesis, such as the development of a Cre-inducible 

stable transgenic line (Freem et al., in preparation), are now set to again revolutionize classic 

avian approaches. For example, application/co-application of Cre-protein on beads or via 

transient transfection of cells could soon be used to specifically knock-out ciliary genes with 

temporal and spatial precision. Finally, chickens are not far behind on the genome-editing front. 

By targeting chicken primordial germ cells in vitro (Macdonald et al., 2012), the chicken genome 

can now be specifically targeted via TALENS or CRISPR/Cas9 technology to edit various ciliary 

genes and their specific function during craniofacial development. 

 

Conclusions 

 

The chicken has long been an important model organism for developmental biology, 

particularly the study of craniofacial development. The chicken embryo has been an especially 

useful vertebrate system for developmental biologists owing to experimental advantages of in 

ovo embryogenesis (Brown et al., 2003), as well as its place in the evolutionary gap between 



 24 

mammals and non-mammalian vertebrates. The recent success in cloning the genes responsible 

for the talpid mutants, together with the discovery that mutations in these genes are responsible 

for human craniofacial ciliopathies, serve as promising examples for the hundreds of well-

characterized mutant stocks whose genetic basis remains unknown (Pisenti et al., 2001). The 

possibility of examining of these mutants with a combination of classical and modern techniques, 

suggests a bright future for the use of chicken and other avian models in the study of 

development and disease. 
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Figure Legends: 

 

Figure 1. Craniofacial development and primary cilia. (A-I) Development of the embryonic 

face in chick, mouse, and human. Note that following prominence fusion, species-specific 

differences become clear (e.g., beak in chicken, snout in mouse). (J) TEM of a primary cilium. 

Axoneme (yellow), basal body (green), IFT cargo (red), transition zone (blue). (K) Cross section 

of a primary cilium showing 9+0 microtubule arrangement. (L) Table of common phenotypes 

seen in ciliopathic patients arranged by facial prominence of origin. 

 

Figure 2. The craniofacial phenotype in ta
2
 and ta

3 
embryos.  Frontal views of control, ta

2
, 

and ta
3
 embryos at (A, B, C) HH21, (D, E, F) HH25, (G, H, I) day 7, and (M, N, O) day 10.  (J, 

K, L) Dorsal view of developing tongue and mandible in control, ta
2
, and ta

3
 embryos at day 7. 

(P, Q, R) Palatal views of control ta
2
, and ta

3 
embryos at day 10. Dotted white lines outline 

affected facial prominences in (A-F) and the tongue in (J, K), asterisk denotes lack of tongue in 

(L). Black arrows in (H) denote lack of fusion between FNP and MXP; black arrow in (I) 

denotes anteriorly shifted FNP; black arrows in (N) denote tooth-like structures; white arrows in 

(O) denotes ectopic lens. FNP, frontonasal prominence; MXP, maxillary prominence, MNP, 

mandibular prominence; t, tongue; 1°, primary palate; 2°, secondary palate. Scale bars: (A-F) 

1.15 mm; (G, H, I) 1.5 mm; (J, K, L) 1 mm; (M, N, O) 2.25 mm; (P, Q, R) 2.5 mm.  

 

Figure 3. Shh expressing domains in ta
2
 and ta

3
 embryos. Schematic representation of SHH 

expression in control, ta
2
 and ta

3
 embryos. (A, B, C) SHH expression in the frontonasal 

prominence (FNP), (D, E, F) notochord and floor plate, (G, H, I), zona limitans intrathalamica 

(ZLI) of control, ta
2
, and ta

3
 embryos. Primary domains of SHH expression (notochord) are 

unchanged in ta
2
 and ta

3
 mutants. Secondary domains of SHH expression (FEZ/oral ectoderm, 

floor plate and ZLI) are all disrupted in ta
3
 mutants. SHH expression in the floor plate is 

maintained in ta
2
 embryos, but SHH expression at the other secondary domains (FEZ and ZLI) is 

disrupted.  

 

Figure 4. The craniofacial phenotype in dp-4, co, and cpp embryos. Frontal views of control 

dp-4, co, and cpp embryos at (A, F, K, P) HH25, (B, G, L, Q) day 7, and (C, H, M, R) day 10.  

(D, I, N, S) Palatal views of control, dp-4, co, and cpp embryos at day 10. (E, J, O, T) Dorsal 

view of developing tongue and mandible in control, dp-4, co, and cpp embryos at day 10. Dotted 

white lines outline affected facial prominences in (A, F, K, P) and the tongue in (E, J, O, T). 

Asterisk in (J) denotes lack of tongue. Black arrows in (G, L, Q) denote lack of fusion between 

FNP and MXP. FNP, frontonasal prominence; MXP, maxillary prominence, MNP, mandibular 

prominence; t, tongue; 1°, primary palate; 2°, secondary palate.  Scale bars: (A, F, K, P) 1.15 

mm; (B, D, G, I, L, N, Q, S) 1.5 mm; (C, H, M, R) 2.25 mm; (E, J, O, T) 2.5 mm.   
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Figure 5. Schematic representations of common experimental techniques used for 

craniofacial studies in chicken embryos. (A) Dorsal neural tube transplants between control 

host and GFP-positive (Glo) donor chick embryos. A portion of the dorsal neural tube is 

removed from an HH8
+
/9

-
 control host and replaced with an equivalent portion from a Glo donor 

embryo. Donor Glo neural crest cells migrate toward the facial prominences in chimeras. (B) 

Schematic of experimental design for in ovo electroporation. DNA construct is injected into the 

neural tube and electroporated into the tissue. Cells that successfully incorporated the DNA 

express GFP. Examples of electroporated embryos at 24 and 48 hours post electroporation are 

shown. (C) Affi-Gel Blue beads (red dashed circles) grafted into the facial prominences (FNP, 

MXP, or MNP) of HH25 chick embryos. Hematoxyalin and eosin staining of sections of above 

chick embryos with implanted Affi-Gel Blue beads (blue dashed circles). nt, neural tube; FNP, 

frontonasal prominence; MXP, maxillary prominence, MNP, mandibular prominence. Scale 

bars: (A) 250 μm, (B) 1 mm and 150 μm, (C) 700 μm and 650 μm.  

 

  

Table 1. Available animal models for human craniofacial ciliopathies. Human craniofacial 

ciliopathies and their associated phenotypes are listed. In addition, the causal gene and relevant 

animal models (chicken in red, mouse in blue) for each disorder are listed. 

 

Ciliopathy Craniofacial Phenotype 
Gene with Animal 

Model 
Animal Model 

References 

Oral-facial-
digital 

syndrome 
(OFD) 

facial asymmetry; 
hypertelorism; 

micrognathia; broadened 
nasal ridge; hypoplasia of 
the malar bones and nasal 

alar cartilages; frontal 
bossing; pseudocleft; cleft 
palate; hamartomas of the 

tongue; bifid tongue; 
hyperplastic oral frenula; 

up-slanting palprebral 
fissures  

C2CD3 - talpid2 (ta2); 
C2CD3-Hearty;     

C2CD3 - C2cd3GT;          
OFD1 - Ofd1-/-  

Schock et al., 2015; 
Chang et al., 2014; 
Hoover et al., 2008; 
Ferrante et al., 2003 

Joubert 
syndrome (JS) 

prominent forehead; high 
rounded eyebrows; 

epicanthal folds; ptosis; 
upturned nose with evident 

nostrils; hypertelorism; 
open mouth and tongue 
protrusion with rhythmic 

tongue motions  

KIAA0586- talpid3 
(ta3);                     

CEP290 - 
Cep290LacZ/LacZ; JBTS17 

- Hug; RPGRIP1L-
Rpgrip1/Ftm 

Damerla et al., 2015; 
Hynes et al., 2014; 
Delous et al., 2007; 
Sayer et al., 2006;  
Davey et al., 2006 

Bardet-Biedl 
syndrome 

(BBS) 

Mid-face shortening and 
flattening; nasal bridge 

hypoplasia; reduced 

BBS4 - Bbs4-/- ;BBS6 - 
Bbs6-/-   

Tobin et al.,2008  
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length/bulbosity of the 
nasal tip; mild reterognathia  

Meckel-
Gruber 

syndrome 

encephalocele;  cleft lip and 
palate 

MKS1 - Mks1krc;              
MKS1 - Mksdel64-323;            

MKS1 - 
Mks1tm1a(EUCOMM)Wtsi;            

TMEM67 - 
Tmem67tm1Dgen/H1   

Abdelhamed et al., 
2015; Wheway et al., 

2013;  Cui et al., 2011; 
Weatherbee et al., 

2009 

Cranioectoder
mal dysplasia/ 
Sensenbrenne

r syndrome   

sagittal craniosynostosis; 
epicanthal folds; 

hypodontia or microdontia; 
everted lip; multiple oral 

frenula; high arched palate; 
skeletal and ectodermal 

anomalies  

 IFT122 - Ift122-/-  
 Walczak-Sztulpa et al., 

2010 

Ellis-van 
Creveld 

syndrome 

hypertrophy labiogingival 
frenulum; upper lip 

abnormalities;  presence of 
teeth at birth; microdontic 

teeth   

EVC1 - Evc-/-; EVC2 - 
Evc2-/-  

Nakatomi et al., 2013; 
Caparrós-Martín et al., 

2013;  Ruiz-Perez et 
al., 2007 

 

 

  



 35 

 

 

Highlights 

 

 Chickens are useful models for studying craniofacial development and disease. 
 The talpid2 and talpid3 are avian models for ciliopathies that represent the first 

spontaneous mutants to have their causative genes identified. 
 talpid2 can be used as an animal model for the human ciliopathy Oral-facial-digital 

syndrome (OFD) 
 talpid3 can be used as an animal model for the human ciliopathy Joubert Syndrome 

(JS).  
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