21 research outputs found

    The antimicrobial activity of theobromine against cariogenic microbes: an in vitro pilot study

    Get PDF
    Objective This pilot study aimed to compare the antimicrobial effect of theobromine, sodium fluoride, and a theobromine-sodium fluoride combination against the following caries-associated bacteria: Streptococcus mutans and Actinomyces naeslundii. Methodology Antimicrobial susceptibility was tested via the broth microdilution method, with suspensions cultured on each microbe’s respective selective media. Shapiro–Wilk’s was completed and all the data showed normality (p > 0.05), and One-way ANOVA was applied to infer the significant differences in the viable counts between the groups. Results All experimental conditions for both S. mutans and A. naeslundii groups resulted in a significantly lower bacterial abundance in comparison to the control medium, without any active antimicrobial agent (p  0.05). Conclusion Theobromine’s antimicrobial activity against S. mutans and A. naeslundii was found similar to that of fluoride, whether used independently or in combination. Further testing of theobromine is necessary to assess its role as an alternative anticaries agent

    The metatranscriptomes of root caries and sound root surface biofilms

    Get PDF
    There is limited knowledge of bacterial metabolism in root caries lesions. The aim of this study was to describe the bacterial metatranscriptomes associated with root caries and sound root surfaces using an RNA-seq analysis approach. The biofilms from exposed root surfaces were sampled from caries-free volunteers (n=10), and from the infected dentine of volunteers with root caries (n=30). Total bacterial RNA was extracted; cDNA libraries were prepared and sequenced on the Illumina Hi-Seq2500. The function and composition of the metabolically active microbiota were investigated using: a) MG-RAST, and b) denovo assembly of the read data and mapping to contigs. Differential gene expression analysis was done using the R package DESeq2 (padj <10−3). Transcripts with the highest expression levels were those coding for membrane transport systems, ribosomal proteins, enolase and glycolytic pathways in both groups. Differential analysis indicated that genes coding for the OmpA domain protein and metalloprotease domain protein were over-expressed in the caries samples (log2FoldChange = –12.2; padj= 3.5 × 10−13), whereas genes in the samples from healthy sites over-expressed pilus biosynthesis protein, thiamine diphosphokinase and transporter protein (log2FoldChange = 16.5; padj = 2.2 × 10−21). Metatranscriptomic analyses show unique gene expression profiles in sound root surface and carious biofilms

    Sustainable multifunctional phenolic lipids as potential therapeutics in Dentistry

    Get PDF
    Phenolic lipids components of the cashew nutshell liquid (CNSL) have molecular structures capable of chemical signalling that regulate gene expression, metabolism and inflammation. This study sets out to assess how CNSL derivatives impact oral bacteria, from an antibacterial and anti-collagenolytic perspective, as well as its biocompatibility with dental pulp stem cells. Two hemi-synthetic saturated CNSL derivative compounds were selected (LDT11-Anacardic Acids-derivative and LDT409-cardanol-derivative). Bacteriostatic activity was tested against Streptococcus mutans and Veillonella parvula. Antimicrobial capacity against preformed S. mutans biofilms was investigated using a collagen-coated Calgary Biofilm Device and confocal microscopy. Clostridium histolyticum, P. gingivalis and S. mutans biofilms were used to assess anti-collagenolytic activity. Biocompatibility with human dental pulp stromal cells (HDPSCs) was investigated (MTT for viability proportion, LDH assays for cell death rate). LDTs inhibited the bacterial growth, as well as partially inhibited bacterial collagenases in concentrations higher than 5 ÎŒg/mL. Dose–response rates of biofilm cell death was observed (LDT11 at 20, 50, 100 ÎŒg/mL = 1.0 ± 0.4, 0.7 ± 0.3, 0.6 ± 0.03, respectively). Maximum cytotoxicity was 30%. After 1 week, LDT409 had no HDPSCs death. HDPSCs viability was decreased after 24 h of treatment with LDT11 and LDT409, but recovered at 72 h and showed a massive increase in viability and proliferation after 1 week. LDTs treatment was associated with odontoblast-like morphology. In conclusion, LDT11 multifunctionality and biocompatibility, stimulating dental pulp stem cells proliferation and differentiation, indicates a potential as a bio-based dental material for regenerative Dentistry. Its potential as a bacterial collagenases inhibitor to reduce collagen degradation in root/dentinal caries can be further explored

    Enrichment of sulphate-reducers and depletion of butyrate-producers may be hyperglycaemia signatures in the diabetic oral microbiome

    Get PDF
    Objectives This study aimed to investigate oral microbial signatures associated with hyperglycaemia, by correlating the oral microbiome with three glycaemic markers. Potential association between clinical parameters and oral bacterial taxa that could be modulating the hyperglycaemic microbiome was also explored. Methods Twenty-three individuals diagnosed with type 2 Diabetes Mellitus (T2D) and presenting periodontitis were included, as well as 25 systemically and periodontally healthy ones. Fasting blood glucose, glycated haemoglobin, salivary glucose, periodontitis classification, caries experience and activity and salivary pH were evaluated. The V4 region of the 16S rRNA gene was amplified from total salivary DNA, and amplicons were sequenced (Illumina MiSeq). Results Hyperglycaemia was correlated with proportions of Treponema, Desulfobulbus, Phocaiecola and Saccharimonadaceae. Desulfobulbus was ubiquitous and the most enriched organism in T2D individuals (log2FC = 4). The Firmicutes/Bacteroidetes ratio was higher at alkali salivary pH than acidic pH. In the network analysis, Desulfobulbus was clustered in a negative association with caries-associated and butyrate-producing bacteria. Conclusion The salivary microbiome is shaped by systemic hyperglycaemia, as well as changes in the salivary pH, which may be linked to local hyperglycaemia. The enrichment of predictive biomarkers of gut dysbiosis in the salivary microbiome can reflect its capacity for impairment of hyperglycaemia

    UWISH2 -- The UKIRT Widefield Infrared Survey for H2

    Get PDF
    We present the goals and preliminary results of an unbiased, near-infrared, narrow-band imaging survey of the First Galactic Quadrant (10deg<l<65deg ; -1.3deg<b<+1.3deg). This area includes most of the Giant Molecular Clouds and massive star forming regions in the northern hemisphere. The survey is centred on the 1-0S(1) ro-vibrational line of H2, a proven tracer of hot, dense molecular gas in star-forming regions, around evolved stars, and in supernova remnants. The observations complement existing and upcoming photometric surveys (Spitzer-GLIMPSE, UKIDSS-GPS, JCMT-JPS, AKARI, Herschel Hi-GAL, etc.), though we probe a dynamically active component of star formation not covered by these broad-band surveys. Our narrow-band survey is currently more than 60% complete. The median seeing in our images is 0.73arcsec. The images have a 5sigma detection limit of point sources of K=18mag and the surface brightness limit is 10^-19Wm^-2arcsec^-2 when averaged over our typical seeing. Jets and outflows from both low and high mass Young Stellar Objects are revealed, as are new Planetary Nebulae and - via a comparison with earlier K-band observations acquired as part of the UKIDSS GPS - numerous variable stars. With their superior spatial resolution, the UWISH2 data also have the potential to reveal the true nature of many of the Extended Green Objects found in the GLIMPSE survey.Comment: 14pages, 8figures, 2tables, accepted for publication by MNRAS, a version with higher resolution figures can be found at http://astro.kent.ac.uk/~df

    A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the <i>Herschel</i> Gould Belt survey

    Get PDF
    We present and discuss the results of the HerschelHerschel Gould Belt survey (HGBS) observations in an ~11 deg2deg^2 area of the Aquila molecular cloud complex at dd ~ 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70ÎŒm70\mu m to 500ÎŒm500\mu m. Using the multi-scale, multi-wavelength source extraction algorithm getsourcesgetsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% ± 10% of which are gravitationally bound prestellar cores, and they will likely form stars in the future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is ~1 Myr, which is typically ~4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the HerschelHerschel-identified prestellar cores are located above a background column density corresponding to AVA_V ~ 7, and ~75% of them lie within filamentary structures with supercritical masses per unit length ≳16 M⊙/pcM_{\odot}/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at AV>7A_V> 7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic “efficiency” SFR/MdenseSFR/M_{dense} ~5−2+2x10−8yr−15^{+2}_{-2}x 10^{-8}yr^{-1} for the star formation process in dense gas

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Acid tolerance of Lactobacillus spp. on root carious lesions: a complex and multifaceted response

    No full text
    Lactobacillus spp. are acidogenic and aciduric bacteria and are among the main cariogenic microorganisms associated with the carious process. Objective: This study aimed to identify genes involved in the acid-tolerance of Lactobacillus spp. and potential functions attributed to these genes within the metatranscriptome of sound root surfaces and carious root surfaces. Design: Genomic libraries were built from mRNA isolated from the biofilm samples (10 from sound root and 9 from carious root using Illumina HiSeq 2500). Reads generated by RNA-seq were mapped against 162 oral microbial genomes and genes potentially related to acid tolerance were manually extracted from the Lactobacillus spp. genomes using L. paracasei ATCC 344 as reference genome. The R package DESeq2 was used to calculate the level of differential gene expression between those two clinical conditions. Results: Fifteen Lactobacillus spp. genomes were identified and a total of 653 acid tolerance genes were overexpressed in carious root surfaces. Multiple functions, as translation, ribosomal structure and biogenesis, transport of nucleotides and amino acids, are involved in Lactobacillus spp. acid tolerance. Species-specific functions also seem to be related to the fitness of Lactobacillus spp. in acidified environments such as that of the cariogenic biofilm associated with carious root lesions. Conclusions: The response of Lactobacillus spp. to an acidic environment is complex and multifaceted. This finding suggests several possible avenues for further research into the adaptive mechanisms of these bacteria
    corecore