87 research outputs found

    Low Frequency Groans Indicate Larger and More Dominant Fallow Deer (Dama dama) Males

    Get PDF
    Background: Models of honest advertisement predict that sexually selected calls should signal male quality. In most vertebrates, high quality males have larger body sizes that determine higher social status and in turn higher reproductive success. Previous research has emphasised the importance of vocal tract resonances or formant frequencies of calls as cues to body size in mammals. However, the role of the acoustic features of vocalisations as cues to other quality-related phenotypic characteristics of callers has rarely been investigated. Methodology/Principal Findings: We examined whether the acoustic structure of fallow deer groans provides reliable information on the quality of the caller, by exploring the relationships between male quality (body size, dominance rank, and mating success) and the frequency components of calls (fundamental frequency, formant frequencies, and formant dispersion). We found that body size was not related to the fundamental frequency of groans, whereas larger males produced groans with lower formant frequencies and lower formant dispersion. Groans of high-ranking males were characterised by lower minimum fundamental frequencies and to a lesser extent, by lower formant dispersions. Dominance rank was the factor most strongly related to mating success, with higher-ranking males having higher mating success. The minimum fundamental frequency and the minimum formant dispersion were indirectly related to male mating success (through dominance rank). Conclusion/Significance: Our study is the first to show that sexually selected vocalisations can signal social dominance in mammals other than primates, and reveals that independent acoustic components encode accurate information on different phenotypic aspects of male quality

    Efficient algorithms for reconstructing gene content by co-evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a previous study we demonstrated that co-evolutionary information can be utilized for improving the accuracy of ancestral gene content reconstruction. To this end, we defined a new computational problem, the Ancestral Co-Evolutionary (ACE) problem, and developed algorithms for solving it.</p> <p>Results</p> <p>In the current paper we generalize our previous study in various ways. First, we describe new efficient computational approaches for solving the ACE problem. The new approaches are based on reductions to classical methods such as linear programming relaxation, quadratic programming, and min-cut. Second, we report new computational hardness results related to the ACE, including practical cases where it can be solved in polynomial time.</p> <p>Third, we generalize the ACE problem and demonstrate how our approach can be used for inferring parts of the genomes of <it>non-ancestral</it> organisms. To this end, we describe a heuristic for finding the portion of the genome ('dominant set’) that can be used to reconstruct the rest of the genome with the lowest error rate. This heuristic utilizes both evolutionary information and co-evolutionary information.</p> <p>We implemented these algorithms on a large input of the ACE problem (95 unicellular organisms, 4,873 protein families, and 10, 576 of co-evolutionary relations), demonstrating that some of these algorithms can outperform the algorithm used in our previous study. In addition, we show that based on our approach a ’dominant set’ cab be used reconstruct a major fraction of a genome (up to 79%) with relatively low error-rate (<it>e.g.</it> 0.11). We find that the ’dominant set’ tends to include metabolic and regulatory genes, with high evolutionary rate, and low protein abundance and number of protein-protein interactions.</p> <p>Conclusions</p> <p>The <it>ACE</it> problem can be efficiently extended for inferring the genomes of organisms that exist today. In addition, it may be solved in polynomial time in many practical cases. Metabolic and regulatory genes were found to be the most important groups of genes necessary for reconstructing gene content of an organism based on other related genomes.</p

    Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera)

    Get PDF
    BACKGROUND: Sponges (Porifera) are nerve- and muscleless metazoa, but display coordinated motor reactions. Therefore, they represent a valuable phylum to investigate coordination systems, which evolved in a hypothetical Urmetazoon prior to the central nervous system (CNS) of later metazoa. We have chosen the contractile and locomotive species Tethya wilhelma (Demospongiae, Hadromerida) as a model system for our research, using quantitative analysis based on digital time lapse imaging. In order to evaluate candidate coordination pathways, we extracorporeally tested a number of chemical messengers, agonists and antagonists known from chemical signalling pathways in animals with CNS. RESULTS: Sponge body contraction of T. wilhelma was induced by caffeine, glycine, serotonine, nitric oxide (NO) and extracellular cyclic adenosine monophosphate (cAMP). The induction by glycine and cAMP followed patterns varying from other substances. Induction by cAMP was delayed, while glycine lead to a bi-phasic contraction response. The frequency of the endogenous contraction rhythm of T. wilhelma was significantly decreased by adrenaline and NO, with the same tendency for cAMP and acetylcholine. In contrast, caffeine and glycine increased the contraction frequency. The endogenous rhythm appeared irregular during application of caffeine, adrenaline, NO and cAMP. Caffeine, glycine and NO attenuated the contraction amplitude. All effects on the endogenous rhythm were neutralised by the washout of the substances from the experimental reactor system. CONCLUSION: Our study demonstrates that a number of chemical messengers, agonists and antagonists induce contraction and/or modulate the endogenous contraction rhythm and amplitude of our nerveless model metazoon T. wilhelma. We conclude that a relatively complex system of chemical messengers regulates the contraction behaviour through auto- and paracrine signalling, which is presented in a hypothetical model. We assume that adrenergic, adenosynergic and glycinergic pathways, as well as pathways based on NO and extracellular cAMP are candidates for the regulation and timing of the endogenous contraction rhythm within pacemaker cells, while GABA, glutamate and serotonine are candidates for the direct coordination of the contractile cells

    From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    Get PDF
    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted

    Joint action aesthetics

    Get PDF
    Synchronized movement is a ubiquitous feature of dance and music performance. Much research into the evolutionary origins of these cultural practices has focused on why humans perform rather than watch or listen to dance and music. In this study, we show that movement synchrony among a group of performers predicts the aesthetic appreciation of live dance performances. We developed a choreography that continuously manipulated group synchronization using a defined movement vocabulary based on arm swinging, walking and running. The choreography was performed live to four audiences, as we continuously tracked the performers’ movements, and the spectators’ affective responses. We computed dynamic synchrony among performers using cross recurrence analysis of data from wrist accelerometers, and implicit measures of arousal from spectators’ heart rates. Additionally, a subset of spectators provided continuous ratings of enjoyment and perceived synchrony using tablet computers. Granger causality analyses demonstrate predictive relationships between synchrony, enjoyment ratings and spectator arousal, if audiences form a collectively consistent positive or negative aesthetic evaluation. Controlling for the influence of overall movement acceleration and visual change, we show that dance communicates group coordination via coupled movement dynamics among a group of performers. Our findings are in line with an evolutionary function of dance–and perhaps all performing arts–in transmitting social signals between groups of people. Human movement is the common denominator of dance, music and theatre. Acknowledging the time-sensitive and immediate nature of the performer-spectator relationship, our study makes a significant step towards an aesthetics of joint actions in the performing arts

    A Conceptual Framework for Information Technology in Social Work Practice

    No full text
    This article describes how information systems research in the human services can be facilitated with a conceptual framework that addresses the fundamental roles of data, information and knowledge in understanding organizational information systems. Using methodologies originating in information systems and organizational research, the resulting conceptual framework explains how we are to understand information technology from the perspectives of clinical social work, supervision, social work administration, policy, and community collaborations. It concludes by reminding us that to the extent we have done little to educate our students on the differences between data, information and knowledge, and to educate them based on research performed in our human services agencies, is the extent to which our professional practice relative to technology will not advance in the 21st century

    Wherefore Wikis?

    No full text
    • …
    corecore