7 research outputs found

    Diabetes MILES - Australia (Management and Impact for Long-Term Empowerment and Success) : methods and sample characteristics of a national survey of the psychological aspects of living with type 1 or type 2 diabetes in Australian adults

    Get PDF
    Background Successful management of diabetes requires attention to the behavioural, psychological and social aspects of this progressive condition. The Diabetes MILES (Management and Impact for Long-term Empowerment and Success) Study is an international collaborative. Diabetes MILES-Australia, the first Diabetes MILES initiative to be undertaken, was a national survey of adults living with type 1 or type 2 diabetes in Australia. The aim of this study was to gather data that will provide insights into how Australians manage their diabetes, the support they receive and the impact of diabetes on their lives, as well as to use the data to validate new diabetes outcome measures.Methods The survey was designed to include a core set of self-report measures, as well as modules specific to diabetes type or management regimens. Other measures or items were included in only half of the surveys. Cognitive debriefing interviews with 20 participants ensured the survey content was relevant and easily understood. In July 2011, the survey was posted to 15,000 adults (aged 18-70 years) with type 1 or type 2 diabetes selected randomly from the National Diabetes Services Scheme (NDSS) database. An online version of the survey was advertised nationally. A total of 3,338 eligible Australians took part; most (70.4%) completed the postal survey. Respondents of both diabetes types and genders, and of all ages, were adequately represented in both the postal and online survey sub-samples. More people with type 2 diabetes than type 1 diabetes took part in Diabetes MILES-Australia (58.8% versus 41.2%). Most respondents spoke English as their main language, were married/in a de facto relationship, had at least a high school education, were occupied in paid work, had an annual household income &gt; $AUS40,000, and lived in metropolitan areas.Discussion A potential limitation of the study is the under-representation of respondents from culturally and linguistically diverse backgrounds (including Aboriginal and Torres Strait Islander origin). Diabetes MILES-Australia represents a major achievement in the study of diabetes in Australia, where for the first time, the focus is on psychosocial and behavioural aspects of this condition at a national level. <br /

    Immune Profiling and Multiplexed Label-Free Detection of 2D MXenes by Mass Cytometry and High-Dimensional Imaging

    No full text
    There is a critical unmet need to detect and image 2D materials within single cells and tissues while surveying a high degree of information from single cells. Here, a versatile multiplexed label-free single-cell detection strategy is proposed based on single-cell mass cytometry by time-of-flight (CyTOF) and ion-beam imaging by time-of-flight (MIBI-TOF). This strategy, "Label-free sINgle-cell tracKing of 2D matErials by mass cytometry and MIBI-TOF Design" (LINKED), enables nanomaterial detection and simultaneous measurement of multiple cell and tissue features. As a proof of concept, a set of 2D materials, transition metal carbides, nitrides, and carbonitrides (MXenes), is selected to ensure mass detection within the cytometry range while avoiding overlap with more than 70 currently available tags, each able to survey multiple biological parameters. First, their detection and quantification in 15 primary human immune cell subpopulations are demonstrated. Together with the detection, mass cytometry is used to capture several biological aspects of MXenes, such as their biocompatibility and cytokine production after their uptake. Through enzymatic labeling, MXenes' mediation of cell-cell interactions is simultaneously evaluated. In vivo biodistribution experiments using a mixture of MXenes in mice confirm the versatility of the detection strategy and reveal MXene accumulation in the liver, blood, spleen, lungs, and relative immune cell subtypes. Finally, MIBI-TOF is applied to detect MXenes in different organs revealing their spatial distribution. The label-free detection of 2D materials by mass cytometry at the single-cell level, on multiple cell subpopulations and in multiple organs simultaneously, will enable exciting new opportunities in biomedicine

    Management of Diabetes and Hyperglycemia in Hospitals

    No full text
    corecore