46 research outputs found

    Regional prevalence of non-alcoholic fatty liver disease in Seoul and Gyeonggi-do, Korea

    Get PDF
    Background/AimsThe prevalence of nonalcoholic fatty liver disease (NAFLD) in Korea has increased recently. The aim of the present study was to determine the regional differences in the prevalence and characteristics of NAFLD.MethodsFrom January 2009 to December 2010, 161,891 Seoul and Gyeonggi-do residents receiving a health examination at our institution were enrolled in this cross-sectional study. After applying exclusion criteria, the data of 141,610 subjects (80,943 males, 60,667 females) were analyzed. The presence of NAFLD was established by ultrasound examination.ResultsThe overall prevalence of NAFLD was 27.3% (38.3% in men, 12.6% in women). When standardized according to age, area, and sex, the prevalence of NAFLD was 25.2%. The age and area standardized prevalence of NAFLD was higher for men (34.4%) than for women (12.2%; P<0.001). The overall prevalence of NAFLD was higher in Gyeonggi-do (27.7%) than in Seoul (26.9%; P<0.001). Among the men, the prevalence of NAFLD was higher in Gyeonggi-do (39.2%) than in Seoul (37.4%; P<0.001), while for the women it was higher in Seoul (13.2%) than in Gyeonggi-do (12.0%; P<0.001).ConclusionsThe regional prevalence of NAFLD differed between Seoul and Gyeonggi-do. Further studies are needed to establish the etiology of this difference

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    Developmental Transcriptomic Features of the Carcinogenic Liver Fluke, Clonorchis sinensis

    Get PDF
    Clonorchis sinensis is the causative agent of the life-threatening disease endemic to China, Korea, and Vietnam. It is estimated that about 15 million people are infected with this fluke. C. sinensis provokes inflammation, epithelial hyperplasia, and periductal fibrosis in bile ducts, and may cause cholangiocarcinoma in chronically infected individuals. Accumulation of a large amount of biological information about the adult stage of this liver fluke in recent years has advanced our understanding of the pathological interplay between this parasite and its hosts. However, no developmental gene expression profiles of C. sinensis have been published. In this study, we generated gene expression profiles of three developmental stages of C. sinensis by analyzing expressed sequence tags (ESTs). Complementary DNA libraries were constructed from the adult, metacercaria, and egg developmental stages of C. sinensis. A total of 52,745 ESTs were generated and assembled into 12,830 C. sinensis assembled EST sequences, and then these assemblies were further categorized into groups according to biological functions and developmental stages. Most of the genes that were differentially expressed in the different stages were consistent with the biological and physical features of the particular developmental stage; high energy metabolism, motility and reproduction genes were differentially expressed in adults, minimal metabolism and final host adaptation genes were differentially expressed in metacercariae, and embryonic genes were differentially expressed in eggs. The higher expression of glucose transporters, proteases, and antioxidant enzymes in the adults accounts for active uptake of nutrients and defense against host immune attacks. The types of ion channels present in C. sinensis are consistent with its parasitic nature and phylogenetic placement in the tree of life. We anticipate that the transcriptomic information on essential regulators of development, bile chemotaxis, and physico-metabolic pathways in C. sinensis that presented in this study will guide further studies to identify novel drug targets and diagnostic antigens

    Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions

    Get PDF
    We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at root s=13 TeV

    Get PDF
    The pseudorapidity (eta) and transverse-momentum (p(T)) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy root s = 13 TeV. The pseudorapidity distribution in vertical bar eta vertical bar <1.8 is reported for inelastic events and for events with at least one charged particle in vertical bar eta vertical bar <1. The pseudorapidity density of charged particles produced in the pseudorapidity region vertical bar eta vertical bar <0.5 is 5.31 +/- 0.18 and 6.46 +/- 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 <p(T) <20 GeV/c and vertical bar eta vertical bar <0.8 for events with at least one charged particle in vertical bar eta vertical bar <1. The evolution of the transverse momentum spectra of charged particles is also investigated as a function of event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Effects of acetic and formic acid on ABE production by Clostridium acetobutylicum and Clostridium beijerinckii

    No full text
    The effect of acetic acid and formic acid on acetone-butanol-ethanol (ABE) production by solventogenic Clostridia was investigated. The ABE concentration in Clostridium acetobutylicum was found to have increased slightly on addition of 3.7 similar to 9.7 g/L acetic acid, but was found to have drastically reduced in the presence of 11.7 g/L acetic acid. However, the solvent production of C. beijerinckii was not affected by addition of acetic acid in the range of 3.7 similar to 11.7 g/L. C. acetobutylicum was more vulnerable to formic acid than C. beijerinckii. In C. acetobutylicum, the total ABE production decreased to 77% on addition of 0.4 g/L formic acid and 25% with 1.0 g/L formic acid. The total ABE production by C. acetobutylicum was also noted to have decreased from 15.1 to 8.6 g/L when 8.7 g/L acetic acid and 0.4 g/L formic acid co-existed. The solvent production by C. beijerinckii was not affected at all under the tested concentration range of formic acid (0.0 similar to 1.0 g/L) and co-presence of acetic acid and formic acid. Therefore, C. beijerinckii is more favorable than C. acetobutylicum when the ABE is produced using lignocellulosic hydrolysate containing acetic and formic acidclos

    Inactivation of Coprinus cinereus peroxidase during the oxidation of various phenolic compounds originated from lignin

    No full text
    In this study, the inactivation of Coprinus cinereus peroxidase (CiP) during the oxidation of various phenolic compounds originating from lignin was investigated. The CiP was significantly inactivated during the oxidation of phenolic compounds, such as vaniline, p-coumaric acid, 2.6-dimethoxy phenol, 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde, p-cresol, m-cresol and phenol. Conversely, the CiP nearly maintained its initial activity for the oxidation of syringic acid, vanillic acid and ferulic acid. Hydrogen peroxide affected the CiP inactivation, while the polymerized reaction product hardly affected the CiP inactivation. The thermodynamic parameter (Delta Delta AG(f298K)(0)) and turnover capacity (Delta S/Delta E) were adapted to explain the CiP inactivation due to covalent bonding between the enzyme and phenolic compounds. In the cases of syringic acid, vanillic acid and ferulic acid. which maintained high residual CiP activities after reaction, the Delta Delta G(f298K)(0) were more negative and the turnover capacities were higher than the other values. This means that these compounds prefer to form a dimer rather than an enzyme-phenolics complex. Among the inactivation factors, the formation of covalent bonding between the enzyme and phenolic radicals was concluded to be the main mechanism for the inactivation of CiP. The new thermodynamic parameter (Delta Delta G(f298K)(0)) used in this study could help to quantitatively show the reaction tendency of phenolic compounds to form a dimer or covalent bonding with the enzyme, which could be used to predict the degree of CiP inactivation.clos

    Optimized conversion of L-lysine to L-pipecolic acid using recombinant lysine cyclodeaminase from Streptomyces pristinaespiralis

    No full text
    Lysine cyclodeaminase (LCD; EC: 4.3.1.28) is a beta-nicotinamide adenine dinucleotide-dependent enzyme that catalyzes the beta-deamination of L-lysine to produce L-pipecolate. L-pipecolate, also known as L-homoproline, is an immunosuppressant and can be incorporated into multiple secondary metabolite products. Recombinant lysine cyclodeaminase from Streptomyces pristinaespiralis (spLCD) has been successfully expressed in E. coli. Among various substrates with different carbon lengths and enantiomeric statuses, L-lysine was found to be the best substrate for spLCD. We also examined the reaction conditions (buffer type, pH and temperature) to yield a high concentration of L-pipecolic acid. Although spLCD was found highly enantioselective toward L-lysine, its enzymatic activity as well as thermostability was seriously decreased under acidic pH conditions and at temperatures higher than 60A degrees C, respectively. A final conversion of L-lysine to L-pipecolate of over 90% was achieved under optimal reaction conditions of 200 mM PIPES buffer, pH 7.0, and a temperature of 60A degrees Cclos

    Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis

    No full text
    The feasibility of ethanol production from the construction and demolition (C&D) wood waste acid hydrolysates was investigated. The chemical compositions of the classified C&D wood waste were analyzed. Concentrated sulfuric acid hydrolysis was used to obtain the saccharide hydrolysates and the inhibitors in the hydrolysates were also analyzed. The C&D wood waste composed of lumber, plywood, particleboard, and medium density fiberboard (MDF) had polysaccharide (cellulose, xylan, and glucomannan) fractions of 60.7-67.9%. The sugar composition (glucose, xylose, and mannose) of the C&D wood wastes varied according to the type of wood. The additives used in the wood processing did not appear to be released into the saccharide solution under acid hydrolysis. Although some fermentation inhibitors were detected in the hydrolysates, they did not affect the ethanol production by Pichia stipitis. The hexose sugar-based ethanol yield and ethanol yield efficiency were 0.42-0.46 g ethanol/g substrate and 84.7-90.7%, respectively. Therefore, the C&D wood wastes dumped in landfill sites could be used as a raw material feedstock for the production of bioethanol.clos

    Enhanced ethanol production from deacetylated yellow poplar acid hydrolysate by Pichia stipitis

    No full text
    In this study, alkaline-pretreatment for the extraction of acetic acid from xylan of hemicellulose was introduced prior to concentrated acid hydrolysis of yellow poplar wood meal. Ethanol fermentability in deacetylated yellow poplar hydrolysate (DYPH) by Pichia stipitis was also investigated. The alkali-pretreatment conditions were evaluated in terms of temperature, reaction time, and alkalinity. 94% of the acetyl group in xylan of the yellow poplar hemicellulose fraction was extracted using 0.5% sodium hydroxide solution at 60 degrees C for 60 min. The cell growth and ethanol production of P. stipitis was strongly affected by acetic acid, either in synthetic medium with 7.1 g/l of acetic acid added or in yellow poplar hydrolysate (YPH) containing 7.1 g/l of acetic acid. On the other hand, ethanol production in DYPH was slightly higher than that of the control although cell growth decreased by 34%. In the case of DYPH, the ethanol yield, volumetric ethanol productivity, and theoretical yield percentage was 0.48 g/g, 0.40 g/l h, and 93.2%, respectively. Thus, the alkaline-pretreatment method greatly enhanced the ethanol fermentability of yellow poplar hydrolysate.clos
    corecore