1,446 research outputs found
Managing uncertainty of XML schema matching
Despite of advances in machine learning technologies, a schema matching result between two database schemas (e.g., those derived from COMA++) is likely to be imprecise. In particular, numerous instances of "possible mappings" between the schemas may be derived from the matching result. In this paper, we study the problem of managing possible mappings between two heterogeneous XML schemas. We observe that for XML schemas, their possible mappings have a high degree of overlap. We hence propose a novel data structure, called the block tree, to capture the commonalities among possible mappings. The block tree is useful for representing the possible mappings in a compact manner, and can be generated efficiently. Moreover, it supports the evaluation of probabilistic twig query (PTQ), which returns the probability of portions of an XML document that match the query pattern. For users who are interested only in answers with k-highest probabilities, we also propose the top-k PTQ, and present an efficient solution for it. The second challenge we have tackled is to efficiently generate possible mappings for a given schema matching. While this problem can be solved by existing algorithms, we show how to improve the performance of the solution by using a divide-andconquer approach. An extensive evaluation on realistic datasets show that our approaches significantly improve the efficiency of generating, storing, and querying possible mappings. © 2010 IEEE.published_or_final_versionThe IEEE 26th International Conference on Data Engineering (ICDE 2010), Long Beach, CA., 1-6 March 2010. In International Conference on Data Engineering. Proceedings, 2010, p. 297-30
Influence of transport and ocean ice extent on biogenic aerosol sulfur in the Arctic atmosphere
The recent decline in sea ice cover in the Arctic Ocean could affect the regional radiative forcing via changes in sea ice-atmosphere exchange of dimethyl sulfide (DMS) and biogenic aerosols formed from its atmospheric oxidation, such as methanesulfonic acid (MSA). This study examines relationships between changes in total sea ice extent north of 70 degrees N and atmospheric MSA measurement at Alert, Nunavut, during 1980-2009; at Barrow, Alaska, during 1997-2008; and at Ny-Alesund, Svalbard, for 1991-2004. During the 1980-1989 and 1990-1997 periods, summer (July-August) and June MSA concentrations at Alert decreased. In general, MSA concentrations increased at all locations since 2000 with respect to 1990 values, specifically during June and summer at Alert and in summer at Barrow and Ny-Alesund. Our results show variability in MSA at all sites is related to changes in the source strengths of DMS, possibly linked to changes in sea ice extent as well as to changes in atmospheric transport patterns. Since 2000, a late spring increase in atmospheric MSA at the three sites coincides with the northward migration of the marginal ice edge zone where high DMS emissions from ocean to atmosphere have previously been reported. Significant negative correlations are found between sea ice extent and MSA concentrations at the three sites during the spring and June. These results suggest that a decrease in seasonal ice cover influencing other mechanisms of DMS production could lead to higher atmospheric MSA concentrations
Decadal changes of the Western Arabian sea ecosystem
Historical data from oceanographic expeditions and remotely sensed data on outgoing longwave radiation, temperature, wind speed and ocean color in the western Arabian Sea (1950–2010) were used to investigate decadal trends in the physical and biochemical properties of the upper 300 m. 72 % of the 29,043 vertical profiles retrieved originated from USA and UK expeditions. Increasing outgoing longwave radiation, surface air temperatures and sea surface temperature were identified on decadal timescales. These were well correlated with decreasing wind speeds associated with a reduced Siberian High atmospheric anomaly. Shoaling of the oxycline and nitracline was observed as well as acidification of the upper 300 m. These physical and chemical changes were accompanied by declining chlorophyll-a concentrations, vertical macrofaunal habitat compression, declining sardine landings and an increase of fish kill incidents along the Omani coast
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons
Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al
Effectiveness of Oral Glycopyrrolate Use in Compensatory Hyperhidrosis Patients
Compensatory hyperhidrosis or reflex hyperhidrosis is the increase in sweating in the postoperative stage of thoracic sympathectomy or lumbar sympathectomy. It shares several features with anxiety disorders and has a negative impact on a patient's quality of life. Oralglycopyrrolate is one of the treatment options available. This study reviewed case notes in a series of 19 patients with compensatory hyperhidrosis. We made a comparison between the Milanez de Campos score of a pre-glycopyrrolate medication group and the Milanez de Campos score of a post-glycopyrrolate medication group. The Beck Depression Inventory (BDI) score, Beck Anxiety Inventory (BAI) score, and autonomic nervous system (ANS) scale score were also compared between the pre-medication and post-medication groups. In the post-glycopyrrolate medication group, there was decrease in the Milanez de Campos score, BAI score, and BDI score (P < 0.05). But no meaningful change was seen in the ANS score in the post-glycopyrrolate medication group (P > 0.05). Glycopyrrolate is an effective medication in the treatment of compensatory hyperhidrosis that, can alleviate anxiety and improve patients' quality of life
In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli
Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction
A series of edge-selectively halogenated (X = Cl, Br, I) graphene nanoplatelets (XGnPs = ClGnP, BrGnP, IGnP) were prepared simply by ball-milling graphite in the presence of Cl-2, Br-2 and I-2, respectively. High BET surface areas of 471, 579 and 662 m(2)/g were observed for ClGnP, BrGnP and IGnP, respectively, indicating a significant extent of delamination during the ball-milling and subsequent workup processes. The newly-developed XGnPs can be well dispersed in various solvents, and hence are solution processable. Furthermore, XGnPs showed remarkable electrocatalytic activities toward oxygen reduction reaction (ORR) with a high selectivity, good tolerance to methanol crossover/CO poisoning effects, and excellent long-term cycle stability. First-principle density-functional calculations revealed that halogenated graphene edges could provide decent adsorption sites for oxygen molecules, in a good agreement with the experimental observations.open271
Cold-induced changes in gene expression in brown adipose tissue, white adipose tissue and liver
Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production
- …
