19 research outputs found

    Limitations of Water Resources Infrastructure for Reducing Community Vulnerabilities to Extremes and Uncertainty of Flood and Drought

    Get PDF
    Debate and deliberation surrounding climate change has shifted from mitigation toward adaptation, with much of the adaptation focus centered on adaptive practices, and infrastructure development. However, there is little research assessing expected impacts, potential benefits, and design challenges that exist for reducing vulnerability to expected climate impacts. The uncertainty of design requirements and associated government policies, and social structures that reflect observed and projected changes in the intensity, duration, and frequency of water-related climate events leaves communities vulnerable to the negative impacts of potential flood and drought. The results of international research into how agricultural infrastructure features in current and planned adaptive capacity of rural communities in Argentina, Canada, and Colombia indicate that extreme hydroclimatic events, as well as climate variability and unpredictability are important for understanding and responding to community vulnerability. The research outcomes clearly identify the need to deliberately plan, coordinate, and implement infrastructures that support community resiliency.Fil: McMartin, Dena W.. University of Regina; CanadĂĄFil: Hernani Merino, Bruno H.. University of Regina; CanadĂĄFil: Bonsal, Barrie. Environment Canada; CanadĂĄFil: Hurlbert, Margot. University of Regina; CanadĂĄFil: Villalba, Ricardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Regional de Investigaciones CientifĂ­cas y TecnolĂłgicas; ArgentinaFil: Ocampo, Olga L.. Universidad AutĂłnoma de Manizales; ColombiaFil: Upegui, Jorge JuliĂĄn VĂ©lez. Universidad Nacional de Colombia; ColombiaFil: Poveda, GermĂĄn. Universidad Nacional de Colombia; ColombiaFil: Sauchyn, David J.. University of Regina; Canad

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.(TABLE)Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013').This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product.This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    New reconstructions of streamflow variability in the South Saskatchewan River Basin from a network of tree ring chronologies, Alberta, Canada

    No full text
    In western Canada growing demand for water resources has increased vulnerability to hydrological drought. The near full allocation of water supplies in the Oldman and Bow River subbasins of the South Saskatchewan River Basin has resulted in a moratorium on new surface water licenses. In this region, short instrumental records limit the detection of long-term hydrological variability. To extend the historical record, we collected 14 new moisture-sensitive tree ring chronologies and reconstructed the average October through September flow of the Oldman (1618-2004) and South Saskatchewan (SSR) (1400-2004) rivers. Our SSR proxy record updates a previously published reconstruction. While the 20th century is representative of drought frequency over the long term, droughts are of greater severity and duration in the preinstrumental proxy record. A spectral analysis of the reconstructed flows revealed quasiperiodic cycles at interannual to multidecadal scales. Copyright 2009 by the American Geophysical Union
    corecore