542 research outputs found

    Epstein-Barr Virus-Induced Gene 3 (EBI3): A Novel Diagnosis Marker in Burkitt Lymphoma and Diffuse Large B-Cell Lymphoma

    Get PDF
    The distinction between Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), two types of mature aggressive B-cell lymphomas that require distinct treatments, can be difficult because of forms showing features intermediate between DLBCL and BL (here called BL/DLBCL). They can be discriminated by the presence of c-myc translocations characteristic of BL. However, these are not exclusive of BL and when present in DLBCL are associated with lower survival. In this study, we show that Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed among BL and DLBCL. Analysis of gene expression data from 502 cases of aggressive mature B-cell lymphomas available on Gene Expression Omnibus and immunohistochemical analysis of 184 cases of BL, BL/DLBCL or DLBCL, showed that EBI3 was not expressed in EBV-positive or -negative BL cases, whereas it was expressed by over 30% of tumoral cells in nearly 80% of DLBCL cases, independently of their subtypes. In addition, we show that c-myc overexpression represses EBI3 expression, and that DLBCL or BL/DLBCL cases with c-myc translocations have lower expression of EBI3. Thus, EBI3 immunohistochemistry could be useful to discriminate BL from DLBCL, and to identify cases of BL/DLBCL or DLBCL with potential c-myc translocations

    EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    Get PDF
    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3-/- ) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral replication in spleen and liver were observed in MCMV-infected Ebi3-/- and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infected Ebi3-/- B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected a decrease in the sustained IL-10 production by NK cells and lower serum levels of IL-10 in the MCMV-infected Ebi3-/- B6 mice. Furthermore, we observed an increase in dendritic cell maturation markers and an increase in activated CD8+ T cells. Thus, EBI3 dampens the immune response against MCMV infection, resulting in prolonged viral persistence

    Human neutrophils activated by TLR8 agonists, with or without IFN\u3b3, synthesize and release EBI3, but not IL-12, IL-27, IL-35, or IL-39

    Get PDF
    The IL-12 family of cytokines plays crucial functions in innate and adaptive immunity. These cytokines include heterodimers sharing distinct \u3b1 (IL-12A, IL-23A, and IL-27A) with two \u3b2 (IL-12B and Epstein-Barr virus induced gene 3 [EBI3]) chains, respectively, IL-12 (IL-12B plus IL-12A) and IL-23 (IL-12B plus IL-23A) sharing IL-12B, IL-27 (EBI3 plus IL-27A), IL-35 (EBI3 plus IL-12A), and IL-39 (EBI3 plus IL-23A) sharing EBI3. In this context, we have recently reported that highly pure neutrophils incubated with TLR8 agonists produce functional IL-23. Previously, we showed that neutrophils incubated with LPS plus IFN\u3b3 for 20 h produce IL-12. Herein, we investigated whether highly pure, TLR8-activated, neutrophils produce EBI3, and in turn IL-27, IL-35, and IL-39, the IL-12 members containing it. We report that neutrophils incubated with TLR8 ligands, TNF\u3b1 and, to a lesser extent, LPS, produce and release remarkable amounts of EBI3, but not IL-27A, consequently excluding the possibility for an IL-27 production. We also report a series of unsuccessful experiments performed to investigate whether neutrophil-derived EBI3 associates with IL-23A to form IL-39. Furthermore, we show that neutrophils incubated with IFN\u3b3 in combination with either TLR8 or TLR4 ligands express/produce neither IL-12, nor IL-35, due to the inability of IFN\u3b3, contrary to previous findings, to activate IL12A transcription. Even IL-27 was undetectable in supernatants harvested from IFN\u3b3 plus R848-treated neutrophils, although they were found to accumulate IL27A transcripts. Finally, by immunohistochemistry experiments, EBI3-positive neutrophils were found in discrete pathologies only, including diverticulitis, cholecystitis, Gorham disease, and Bartonella Henselae infection, implying a specific role of neutrophil-derived EBI3 in vivo

    Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response

    Get PDF
    Summary: The most prominent developmental function attributed to the extracellular matrix (ECM) is cell migration. While cells in culture can produce ECM to migrate, the role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to the moving cells. In contrast to this view, we show here that Drosophila embryonic hemocytes deposit their own laminins in streak-like structures to migrate efficiently throughout the embryo. With the help of transplantation experiments, live microscopy, and image quantification, we demonstrate that autocrine-produced laminin regulates hemocyte migration by controlling lamellipodia dynamics, stability, and persistence. Proper laminin deposition is regulated by the RabGTPase Rab8, which is highly expressed and required in hemocytes for lamellipodia dynamics and migration. Our results thus support a model in which, during embryogenesis, the Rab8-regulated autocrine deposition of laminin reinforces directional and effective migration by stabilizing cellular protrusions and strengthening otherwise transient adhesion states. : The role of ECM in regulating developmental cell migration is classically viewed as an exogenous matrix presented to moving cells. In contrast, using the fruit fly, Sánchez-Sánchez et al. show that Drosophila embryonic hemocytes use autocrine-produced laminins to regulate lamellipodia stability, dynamics, and persistence, thus reinforcing directional migration. Keywords: cell migration, laminins, hemocytes, Drosophila, lamellipodia dynamics, extracellular matri

    IL-12p35 induces expansion of IL-10 and IL-35-expressing regulatory B cells and ameliorates autoimmune disease

    Get PDF
    We thank Dr. Haohua Qian and Yichao Li (Visual function core, NEI, NIH) for technical assistance with OCT; Phyllis Silver (NEI, NIH) for EAU scoring of the eyes; Rashid Mahdi. M.J.M. for technical assistance with western blot analyses and Rafael Villasmil (NEI FLOW Cytometry Core facility) for assistance with FACS analysis.Peer reviewedPublisher PD

    Emerging IL-12 family cytokines in the fight against fungal infections

    Get PDF
    Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus

    IL-35 Is a Novel Responsive Anti-inflammatory Cytokine — A New System of Categorizing Anti-inflammatory Cytokines

    Get PDF
    It remains unknown whether newly identified anti-inflammatory/immunosuppressive cytokine interleukin-35 (IL-35) is different from other anti-inflammatory cytokines such as IL-10 and transforming growth factor (TGF)-β in terms of inhibition of inflammation initiation and suppression of full-blown inflammation. Using experimental database mining and statistical analysis methods we developed, we examined the tissue expression profiles and regulatory mechanisms of IL-35 in comparison to other anti-inflammatory cytokines. Our results suggest that in contrast to TGF-β, IL-35 is not constitutively expressed in human tissues but it is inducible in response to inflammatory stimuli. We also provide structural evidence that AU-rich element (ARE) binding proteins and microRNAs target IL-35 subunit transcripts, by which IL-35 may achieve non-constitutive expression status. Furthermore, we propose a new system to categorize anti-inflammatory cytokines into two groups: (1) the house-keeping cytokines, such as TGF-β, inhibit the initiation of inflammation whereas (2) the responsive cytokines including IL-35 suppress inflammation in full-blown stage. Our in-depth analyses of molecular events that regulate the production of IL-35 as well as the new categorization system of anti-inflammatory cytokines are important for the design of new strategies of immune therapies
    corecore