298 research outputs found

    Proceedings of the Salford Postgraduate Annual Research Conference (SPARC) 2011

    Get PDF
    These proceedings bring together a selection of papers from the 2011 Salford Postgraduate Annual Research Conference(SPARC). It includes papers from PhD students in the arts and social sciences, business, computing, science and engineering, education, environment, built environment and health sciences. Contributions from Salford researchers are published here alongside papers from students at the Universities of Anglia Ruskin, Birmingham City, Chester,De Montfort, Exeter, Leeds, Liverpool, Liverpool John Moores and Manchester

    Automated detection of regions of interest for tissue microarray experiments: an image texture analysis

    Get PDF
    BACKGROUND: Recent research with tissue microarrays led to a rapid progress toward quantifying the expressions of large sets of biomarkers in normal and diseased tissue. However, standard procedures for sampling tissue for molecular profiling have not yet been established. METHODS: This study presents a high throughput analysis of texture heterogeneity on breast tissue images for the purpose of identifying regions of interest in the tissue for molecular profiling via tissue microarray technology. Image texture of breast histology slides was described in terms of three parameters: the percentage of area occupied in an image block by chromatin (B), percentage occupied by stroma-like regions (P), and a statistical heterogeneity index H commonly used in image analysis. Texture parameters were defined and computed for each of the thousands of image blocks in our dataset using both the gray scale and color segmentation. The image blocks were then classified into three categories using the texture feature parameters in a novel statistical learning algorithm. These categories are as follows: image blocks specific to normal breast tissue, blocks specific to cancerous tissue, and those image blocks that are non-specific to normal and disease states. RESULTS: Gray scale and color segmentation techniques led to identification of same regions in histology slides as cancer-specific. Moreover the image blocks identified as cancer-specific belonged to those cell crowded regions in whole section image slides that were marked by two pathologists as regions of interest for further histological studies. CONCLUSION: These results indicate the high efficiency of our automated method for identifying pathologic regions of interest on histology slides. Automation of critical region identification will help minimize the inter-rater variability among different raters (pathologists) as hundreds of tumors that are used to develop an array have typically been evaluated (graded) by different pathologists. The region of interest information gathered from the whole section images will guide the excision of tissue for constructing tissue microarrays and for high throughput profiling of global gene expression

    Quantitative metric profiles capture three-dimensional temporospatial architecture to discriminate cellular functional states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles contribute to misdiagnosis.</p> <p>Methods</p> <p>In order to create more complete tissue structure profiles, we adapted our cell-graph method for extracting quantitative features from histopathology images to now capture temporospatial traits of three-dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the <it>nodes </it>and the approximate adjacency of cells are represented with <it>edges</it>. We chose 11 different cell types representing non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins.</p> <p>Results</p> <p>We built cell-graphs from the cellular hydrogel images and computed a large set of features describing the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the discriminative features for our histopathology data from our previous studies.</p> <p>Conclusions</p> <p>Together, these descriptive metrics provide rigorous quantitative representations of image information that other image analysis methods do not. Examining the changes in these five metrics allowed us to easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus improve the detection and diagnosis of disease.</p

    Comparative LCA technology improvement opportunities for a 1.5 MW wind turbine in the context of an offshore wind farm

    Get PDF
    Wind energy is playing an increasingly important role in the development of cleaner and more efficient energy technologies leading to projections in reliability and performance of future wind turbine designs. This paper presents life cycle assessment (LCA) results of design variations for a 1.5 MW wind turbine due to the potential for advances in technology to improve the performance of a 1.5 MW wind turbine. Five LCAs have been conducted for design variants of a 1.5 MW wind turbine. The objective is to evaluate potential environmental impacts per kilowatt hour of electricity generated for a 114 MW onshore wind farm. Results for the baseline turbine show that higher contributions to impacts were obtained in the categories Ozone Depletion Potential, Marine Aquatic Eco-toxicity Potential, Human Toxicity Potential and Terrestrial Eco-toxicity Potential compared to Technology Improvement Opportunities (TIOs) 1 to 4. Compared to the baseline turbine, TIO 1 showed increased impact contributions to Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential and Photochemical Ozone Creation Potential, and TIO 2 showed an increase in contributions to Abiotic Depletion Potential, Acidification Potential and Global Warming Potential. Additionally, lower contributions to all the environmental categories were observed for TIO 3 while increased contributions towards Abiotic Depletion Potential and Global Warming Potential were noted for TIO 4. A comparative LCA study of wind turbine design variations for a particular power rating has not been explored in the literature. This study presents new insight into the environmental implications related with projected wind turbine design advancements

    High prevalence of fecal carriage of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a pediatric unit in Madagascar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extended-spectrum β-lactamase (ESBL)-producing <it>Enterobacteriaceae </it>have spread worldwide but there are few reports on carriage in hospitals in low-income countries. ESBL-producing <it>Enterobacteriaceae </it>(ESBL-PE) have been increasingly isolated from nosocomial infections in Antananarivo, Madagascar.</p> <p>Methods</p> <p>we conducted a prevalence survey in a pediatric unit from March to April 2008 Patient rectal swabs were sampled on the first and the last day of hospitalization. Medical staff and environment were also sampled. Rectal and environmental swabs were immediately plated onto Drigalski agar supplemented with 3 mg/liter of ceftriaxon.</p> <p>Results</p> <p>Fecal carriage was detected in 21.2% of 244 infants on admission and 57.1% of 154 on discharge, after more than 48 hours of hospitalization (p < 0.001). The species most frequently detected on admission were <it>Escherichia coli and Klebsiella pneumoniae </it>(36.9%), whereas, on discharge, <it>K. pneumoniae </it>was the species most frequently detected (52.7%). ESBL-associated resistances were related to trimethoprim-sulfamethoxazole (91.3%), gentamicin (76.1%), ciprofloxacin (50.0%), but not to amikacin and imipenem. The increased prevalence of carriage during hospitalization was related to standard antimicrobial therapy.</p> <p>Conclusion</p> <p>The significant emergence of multidrug-resistant enteric pathogens in Malagasy hospitals poses a serious health threat requiring the implementation of surveillance and control measures for nosocomial infections.</p

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres

    Redundant Mechanisms for Regulation of Midline Crossing in Drosophila

    Get PDF
    During development, all neurons have to decide on whether to cross the longitudinal midline to project on the contralateral side of the body. In vertebrates and invertebrates regulation of crossing is achieved by interfering with Robo signalling either through sorting and degradation of the receptor, in flies, or through silencing of its repulsive activity, in vertebrates. Here I show that in Drosophila a second mechanism of regulation exists that is independent from sorting. Using in vitro and in vivo assays I mapped the region of Robo that is sufficient and required for its interaction with Comm, its sorting receptor. By modifying that region, I generated new forms of Robo that are insensitive to Comm sorting in vitro and in vivo, yet still able to normally translate repulsive activity in vivo. Using gene targeting by homologous recombination I created new conditional alleles of robo that are sorting defective (roboSD). Surprisingly, expression of these modified proteins results in phenotypically normal flies, unveiling a sorting independent mechanism of regulation

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Correlated insulator behaviour at half-filling in magic-angle graphene superlattices

    Get PDF
    Van der Waals (vdW) heterostructures are an emergent class of metamaterials comprised of vertically stacked two-dimensional (2D) building blocks, which provide us with a vast tool set to engineer their properties on top of the already rich tunability of 2D materials. 1 One of the knobs, the twist angle between different layers, plays a crucial role in the ultimate electronic properties of a vdW heterostructure and does not have a direct analog in other systems such as MBE-grown semiconductor heterostructures. For small twist angles, the moiré pattern produced by the lattice misorientation creates a long-range modulation. So far, the study of the effect of twist angles in vdW heterostructures has been mostly concentrated in graphene/hex a gonal boron nitride (h-BN) twisted structures, which exhibit relatively weak interlayer interaction due to the presence of a large bandgap in h-BN. 2-5 Here we show that when two graphene sheets are twisted by an angle close to the theoretically predicted ‘magic angle’, the resulting flat band structure near charge neutrality gives rise to a strongly-correlated electronic system . 6 These flat bands exhibit half-filling insulating phases at zero magnetic field, which we show to be a Mott-like insulator arising from electrons localized in the moiré superlattice. These unique properties of magic-angle twisted bilayer graphene (TwBLG) open up a new playground for exotic many-body quantum phases in a 2D platform made of pure carbon and without mag netic field. The easy accessibility of the flat bands, the electrical tunability, and the bandwidth tunability though twist angle may pave the way towards more exotic correlated systems, such as unconventional superconductors or quantum spin liquids
    corecore