8 research outputs found

    Modelling the impacts of agricultural management practices on river water quality in Eastern England

    Get PDF
    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km2. A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of unintended pollutant impacts when evaluating the effectiveness of mitigation options, and showed that high-frequency water quality datasets can be applied to robustly calibrate water quality models, creating DSTs that are more effective and reliable

    Biofuels and the role of space in sustainable innovation journeys

    Get PDF
    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present,and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects,we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and smallscale biofuel systems developed to address local energy needs in the South

    Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method : a case study

    Get PDF
    The catchment-scale groundwater vulnerability assessment that delineates zones representing different levels of groundwater susceptibility to contaminants from diffuse agricultural sources has become an important element in groundwater pollution prevention for the implementation of the EUWater Framework Directive (WFD). This paper evaluates the DRASTIC method using an ArcGIS platform for assessing groundwater vulnerability in the Upper Bann catchment, Northern Ireland. Groundwater vulnerability maps of both general pollutants and pesticides in the study area were generated by using data on the factors depth to water, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity, as defined in DRASTIC. The mountain areas in the study area have “high” (in 4.5% of the study area) or “moderate” (in 25.5%) vulnerability for general pollutants due to high rainfall, net recharge and soil permeability. However, by considering the diffuse agricultural sources, the mountain areas are actually at low groundwater pollution risk. The results of overlaying the maps of land use and the groundwater vulnerability are closer to the reality. This study shows that the DRASTIC method is helpful for guiding the prevention practices of groundwater pollution at the catchment scale in the UK

    Soil quality assessment under emerging regulatory requirements

    Get PDF
    New and emerging policies that aim to set standards for protection and sustainable use of soil are likely to require identification of geographical risk/priority areas. Soil degradation can be seen as the change or disturbance in soil quality and it is therefore crucial that soil and soil quality are well understood to protect soils and to meet legislative requirements. To increase this understanding a review of the soil quality definition evaluated its development, with a formal scientific approach to assessment beginning in the 1970s, followed by a period of discussion and refinement. A number of reservations about soil quality assessment expressed in the literature are summarised. Taking concerns into account, a definition of soil quality incorporating soil's ability to meet multifunctional requirements, to provide ecosystem services, and the potential for soils to affect other environmental media is described. Assessment using this definition requires a large number of soil function dependent indicators that can be expensive, laborious, prone to error, and problematic in comparison. Findings demonstrate the need for a method that is not function dependent, but uses a number of cross-functional indicators instead. This method to systematically prioritise areas where detailed investigation is required, using a ranking based against a desired level of action, could be relatively quick, easy and cost effective. As such this has potential to fill in gaps and compliment existing monitoring programs and assist in development and implementation of current and future soil protection legislation

    Red meat in the diet: an update

    No full text
    corecore