1,674 research outputs found

    Independence of Odor Quality and Absolute Sensitivity in a Study of Aging

    Get PDF
    Young, middle-aged, and senior subjects performed tasks designed to examine whether odor quality discrimination varies independently of sensitivity. One task entailed detection of 2-heptanone and the others AB-X discrimination of quality for sets of 2-heptanone and homologues or 2-heptanone and non-ketones. Subjects sought to discriminate either at intensity-matched concentrations far above threshold, but fixed across subjects, or at levels adjusted to neutralize differences in sensitivity. The young and middle-aged groups manifested the same absolute sensitivity, but the senior group poorer sensitivity. Performance in quality discrimination, however, declined progressively. Performance lacked an association with absolute sensitivity, no matter how examined. These data, in conjunction with converging findings from patients with neurological damage, studies of brain imaging, and the relation between concentration and quality discrimination in younger persons, suggest largely independent processing of odor quality and intensity

    Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future?

    Get PDF
    Fecal microbiota transplantation (FMT) is gaining considerable traction as a therapeutic approach to influence the course of a plethora of chronic conditions, ranging from metabolic syndrome and malignancies to auto-immune and neurological diseases, and helped to establish the contribution of the gut microbiome to these conditions. Although FMT procedures have yielded important mechanistic insights, their use in clinical practice may be limited due to practical objections in the setting of metabolic diseases. While its applicability is established to treat recurrent Clostridiodes difficile, FMT is emerging in ulcerative colitis and various other diseases. A particularly new insight is that FMTs may not only alter insulin sensitivity but may also alter the course of type 1 diabetes by attenuating underlying auto-immunity. In this review, we will outline the major principles and pitfalls of FMT and where optimization of study design and the procedure itself will further advance the field of cardiometabolic medicine.Peer reviewe

    Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications

    Get PDF
    https://www.aiaa.org/ProceedingsDetail.aspx?id=5776Vertically aligned carbon nanotubes (VACNTs) are placed between all plies in an aerospace carbon fiber reinforced plastic laminate (unidirectional plies, [(0/90/±45)2]s) to reinforce the interlaminar region in the z-direction. Significant improvement in Mode I and II interlaminar toughness have been observed previously. In this work, several substructural in-plane strength tests relevant to aerostructures were undertaken: bolt/tension-bearing, open hole compression, and L-shape laminate bending. Improvements are observed for the nanostitched samples: critical bearing strength by 30%, open-hole compression ultimate strength by 10%, and L-shape laminate energy (via increased deflection) of 40%. The mechanism of reinforcement is not compliant interlayer creation, but rather is a fiberstitching mechanism, as no increase in interlayer thickness occurs with the nanostitches. Unlike traditional (large-fiber/tow/pin) stitching or z-pinning techniques that damage inplane fibers and reduce laminate in-plane strengths, the nano-scale CNT-based ‘stitches’ improve in-plane strength, demonstrating the potential of such an architecture for aerospace structural applications. The quality of VACNT transfer to the prepreg laminates has not been optimized and therefore the noted enhancement to strength may be considered conservative. Ongoing work has been undertaken to both improve VACNT transfer and expand the data set.Massachusetts Institute of Technology (Nano-Engineered Composite aerospace STructures (NECST) Consortium

    Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis

    Get PDF
    Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions

    A Calibration of NICMOS Camera 2 for Low Count-Rates

    Full text link
    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z > 1 SNe Ia. Unlike the conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count-rates. However observations at faint count-rates rely on extrapolations. Here instead, we provide a new zeropoint calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with WFC3 in the low count-rate regime using z ~ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR SEDs, uniform colors, and their extended nature gives superior signal-to-noise at the same count rate than would stars. The use of extended objects also allows greater tolerances on PSF profiles. We find ST magnitude zeropoints (after the installation of the NICMOS cooling system, NCS) of 25.296 +- 0.022 for F110W and 25.803 +- 0.023 for F160W, both in agreement with the calibration extrapolated from count-rates 1,000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843 +- 0.025 for F110W and 25.498 +- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zeropoints. To avoid human bias, our cross-calibration was "blinded" in that the fitted zeropoint differences were hidden until the analysis was finalized.Comment: Accepted for Publication in the Astronomical Journal. New version contains added referenc

    Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Full text link
    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5 figures, 8 tables

    Reducing Zero-point Systematics in Dark Energy Supernova Experiments

    Get PDF
    We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission calibration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.Comment: 30 pages,8 figures, 5 table, one reference added, submitted to Astroparticle Physic

    The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA

    Get PDF
    Threonylcarbamoyladenosine (t6A) is a universal modification found at position 37 of ANN decoding tRNAs, which imparts a unique structure to the anticodon loop enhancing its binding to ribosomes in vitro. Using a combination of bioinformatic, genetic, structural and biochemical approaches, the universal protein family YrdC/Sua5 (COG0009) was shown to be involved in the biosynthesis of this hypermodified base. Contradictory reports on the essentiality of both the yrdC wild-type gene of Escherichia coli and the SUA5 wild-type gene of Saccharomyces cerevisiae led us to reconstruct null alleles for both genes and prove that yrdC is essential in E. coli, whereas SUA5 is dispensable in yeast but results in severe growth phenotypes. Structural and biochemical analyses revealed that the E. coli YrdC protein binds ATP and preferentially binds RNAThr lacking only the t6A modification. This work lays the foundation for elucidating the function of a protein family found in every sequenced genome to date and understanding the role of t6A in vivo
    corecore