492 research outputs found
Tuneable molecular doping of corrugated graphene
Density functional theory (DFT) modeling of the physisorption of four
different types of molecules (toluene, bromine dimmer, water and nitrogen
dioxide) over and above graphene ripples has been performed. For all types of
molecules changes of charge transfer and binding energies in respect to flat
graphene is found. The changes in electronic structure of corrugated graphene
and turn of {\pi}-orbitals of carbon atoms in combination with chemical
structure of adsorbed molecules are proposed as the causes of difference with
the perfect graphene case and variety of adsorption properties of different
types of the molecules. Results of calculation suggest that the tops of the
ripples are more attractive for large molecules and valley between ripples for
small molecules. Stability of molecules on the ripples and energy barriers for
migration over flat and corrugated graphene is also discussed.Comment: 15 pages, 5 figures, accepted in Surface Scienc
Tunneling effects on impurity spectral function in coupled asymmetric quantum wires
The impurity spectral function is studied in coupled double quantum wires at
finite temperatures. Simple anisotropy in the confinement direction of the
wires leads to finite non-diagonal elements of the impurity spectral function
matrix. These non-diagonal elements are responsible for tunneling effects and
result in pronounced extra peak in the impurity spectral function up to
temperatures as high as 20 K.Comment: Accepted in Phys. Rev.
Human muscle-derived cell populations isolated by differential adhesion rates: Phenotype and contribution to skeletal muscle regeneration in Mdx/SCID mice
Muscle-derived stem cells (MDSCs) isolated from murine skeletal tissue by the preplate method have displayed the capability to commit to the myogenic lineage and regenerate more efficiently than myoblasts in skeletal and cardiac muscle in murine Duchenne Muscular Dystrophy mice (mdx). However, until now, these studies have not been translated to human muscle cells. Here, we describe the isolation, by a preplate technique, of candidate human MDSCs, which exhibit myogenic and regenerative characteristics similar to their murine counterparts. Using the preplate isolation method, we compared cells that adhere faster to the flasks, preplate 2 (PP2), and cells that adhere slower, preplate 6 (PP6). The human PP6 cells express several markers of mesenchymal stem cells and are distinct from human PP2 (a myoblast-like population) based on their expression of CD146 and myogenic markers desmin and CD56. After transplantation to the gastrocnemius muscle of mdx/SCID mice, we observe significantly higher levels of PP6 cells participating in muscle regeneration as compared with the transplantation of PP2 cells. This study supports some previous findings related to mouse preplate cells, and also identifies some differences between mouse and human muscle preplate cells
Boundary Effects on Dynamic Behavior of Josephson-Junction Arrays
The boundary effects on the current-voltage characteristics in
two-dimensional arrays of resistively shunted Josephson junctions are examined.
In particular, we consider both the conventional boundary conditions (CBC) and
the fluctuating twist boundary conditions (FTBC), and make comparison of the
obtained results. It is observed that the CBC, which have been widely adopted
in existing simulations, may give a problem in scaling, arising from rather
large boundary effects; the FTBC in general turn out to be effective in
reducing the finite-size effects, yielding results with good scaling behavior.
To resolve the discrepancy between the two boundary conditions, we propose that
the proper scaling in the CBC should be performed with the boundary data
discarded: This is shown to give results which indeed scale well and are the
same as those from the FTBC.Comment: RevTex, Final version to appear in Phys. Rev.
Itinerant ferromagnetism in half-metallic CoS_2
We have investigated electronic and magnetic properties of the pyrite-type
CoS_2 using the linearized muffin-tin orbital (LMTO) band method. We have
obtained the ferromagnetic ground state with nearly half-metallic nature. The
half-metallic stability is studied by using the fixed spin moment method. The
non-negligible orbital magnetic moment of Co 3d electrons is obtained as in the local spin density approximation (LSDA). The calculated
ratio of the orbital to spin angular momenta / = 0.15 is
consistent with experiment. The effect of the Coulomb correlation between Co 3d
electrons is also explored with the LSDA + U method. The Coulomb correlation at
Co sites is not so large, eV, and so CoS_2 is possibly
categorized as an itinerant ferromagnet. It is found that the observed
electronic and magnetic behaviors of CoS_2 can be described better by the LSDA
than by the LSDA + U.Comment: 4 pages, 3 postscript figure
Factors Associated with Nodal Pathologic Complete Response Among Breast Cancer Patients Treated with Neoadjuvant Chemotherapy: Results of CALGB 40601 (HER2+) and 40603 (Triple-Negative) (Alliance)
Background: De-escalation of axillary surgery after neoadjuvant chemotherapy (NAC) requires careful patient selection. We seek to determine predictors of nodal pathologic complete response (ypN0) among patients treated on CALGB 40601 or 40603, which tested NAC regimens in HER2+ and triple-negative breast cancer (TNBC), respectively. Patients and Methods: A total of 760 patients with stage II–III HER2+ or TNBC were analyzed. Those who had axillary surgery before NAC (N = 122), or who had missing pretreatment clinical nodal status (cN) (N = 58) or ypN status (N = 41) were excluded. The proportion of patients with ypN0 disease was estimated for those with and without breast pathologic complete response (pCR) according to pretreatment nodal status. Results: In 539 patients, the overall ypN0 rate was 76.3% (411/539) to 93.2% (245/263) in patients with breast pCR and 60.1% (166/276) with residual breast disease (RD) (P < 0.0001). For patients who were cN0 pretreatment, the ypN0 rate was 88.8% (214/241), 96.3% (104/108) with breast pCR, and 82.7% (110/133) with RD. For patients who were cN1, 66.2% (157/237) converted to ypN0, 91.7% (111/121) with breast pCR and 39.7% (46/116) with RD. For patients who were cN2/3, 65.6% (40/61) converted to ypN0, 88.2% (30/34) with breast pCR and 37.0% (10/27) with RD. On multivariable analysis, only pretreatment clinical nodal status and breast pCR/RD were associated with ypN0 status (both P < 0.0001). Conclusions: Breast pCR and pretreatment nodal status are predictive of ypN0 axillary nodal involvement, with < 5% residual nodal disease among cN0 patients who experience breast pCR. These findings support the incorporation of axillary surgery de-escalation strategies into NAC trials
Electrostatic Potentials in Supernova Remnant Shocks
Recent advances in the understanding of the properties of supernova remnant
shocks have been precipitated by the Chandra and XMM X-ray Observatories, and
the HESS Atmospheric Cerenkov Telescope in the TeV band. A critical problem for
this field is the understanding of the relative degree of dissipative
heating/energization of electrons and ions in the shock layer. This impacts the
interpretation of X-ray observations, and moreover influences the efficiency of
injection into the acceleration process, which in turn feeds back into the
thermal shock layer energetics and dynamics. This paper outlines the first
stages of our exploration of the role of charge separation potentials in
non-relativistic electron-ion shocks where the inertial gyro-scales are widely
disparate, using results from a Monte Carlo simulation. Charge density spatial
profiles were obtained in the linear regime, sampling the inertial scales for
both ions and electrons, for different magnetic field obliquities. These were
readily integrated to acquire electric field profiles in the absence of
self-consistent, spatial readjustments between the electrons and the ions. It
was found that while diffusion plays little role in modulating the linear field
structure in highly oblique and perpendicular shocks, in quasi-parallel shocks,
where charge separations induced by gyrations are small, and shock-layer
electric fields are predominantly generated on diffusive scales.Comment: 7 pages, 2 embedded figures, Accepted for publication in Astrophysics
and Space Science, as part of the HEDLA 2006 conference proceeding
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
- …