396 research outputs found

    Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases

    Full text link
    We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas composed of two antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio

    Random-phase approximation study of collective excitations in the Bose-Fermi mixed condensate of alkali-metal gases

    Full text link
    We perform Random Phase Approximation (RPA) study of collective excitations in the bose-fermi mixed degenerate gas of Alkali-metal atoms at T=0. The calculation is done by diagonalization in a model space composed of particle-hole type excitations from the ground state, the latter being obtained from the coupled Gross-Pitaevskii and Thomas-Fermi equations. We investigate strength distributions for different combinations of bose and fermi multipole (LL) operators with L=0,1,2,3L=0,1,2,3. Transition densities and dynamical structure factors are calculated for collective excitations. Comparison with the sum rule prediction for the collective frequency is given. Time dependent behavior of the system after an external impulse is studied.Comment: 28 pages, 13 figures, submitted to Phys. Rev.

    Hamiltonian Theory of the Composite Fermion Wigner Crystal

    Full text link
    Experimental results indicating the existence of the high magnetic field Wigner Crystal have been available for a number of years. While variational wavefunctions have demonstrated the instability of the Laughlin liquid to a Wigner Crystal at sufficiently small filling, calculations of the excitation gaps have been hampered by the strong correlations. Recently a new Hamiltonian formulation of the fractional quantum Hall problem has been developed. In this work we extend the Hamiltonian approach to include states of nonuniform density, and use it to compute the excitation gaps of the Wigner Crystal states. We find that the Wigner Crystal states near ν=1/5\nu=1/5 are quantitatively well described as crystals of Composite Fermions with four vortices attached. Predictions for gaps and the shear modulus of the crystal are presented, and found to be in reasonable agreement with experiments.Comment: 41 page, 6 figures, 3 table

    Abundances of the elements in the solar system

    Full text link
    A review of the abundances and condensation temperatures of the elements and their nuclides in the solar nebula and in chondritic meteorites. Abundances of the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New York: Springer-Verlag, p. 560-63

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    The Lamb shift in muonic hydrogen and the proton radius

    Get PDF
    By means of pulsed laser spectroscopy applied to muonic hydrogen (μ− p) we have measured the 2S F = 1 1/2 − 2PF = 2 3/2 transition frequency to be 49881.88(76) GHz. By comparing this measurement with its theoretical prediction based on bound-state QED we have determined a proton radius value of rp = 0.84184 (67) fm. This new value is an order of magnitude preciser than previous results but disagrees by 5 standard deviations from the CODATA and the electronproton scattering values. An overview of the present effort attempting to solve the observed discrepancy is given. Using the measured isotope shift of the 1S-2S transition in regular hydrogen and deuterium also the rms charge radius of the deuteron rd = 2.12809 (31) fm has been determined. Moreover we present here the motivations for the measurements of the μ 4He + and μ 3He + 2S-2P splittings. The alpha and triton charge radii are extracted from these measurements with relative accuracies of few 10 − 4. Measurements could help to solve the observed discrepancy, lead to the best test of hydrogen-like energy levels and provide crucial tests for few-nucleon ab-initio theories and potentials

    Two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/388

    Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV

    Get PDF
    Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at sNN\sqrt{s_{_{\rm NN}}} = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in η<0.8|\eta|<0.8 and 0.3<pT<200.3 < p_T < 20 GeV/cc are compared to the expectation in pp collisions at the same sNN\sqrt{s_{\rm NN}}, scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor RAAR_{\rm AA}. The result indicates only weak medium effects (RAAR_{\rm AA} \approx 0.7) in peripheral collisions. In central collisions, RAAR_{\rm AA} reaches a minimum of about 0.14 at pT=6p_{\rm T}=6-7GeV/cc and increases significantly at larger pTp_{\rm T}. The measured suppression of high-pTp_{\rm T} particles is stronger than that observed at lower collision energies, indicating that a very dense medium is formed in central Pb-Pb collisions at the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
    corecore