44 research outputs found

    Chiral extrapolation of lattice data for the hyperfine splittings of heavy mesons

    Get PDF
    Hyperfine splittings between the heavy vector (D*, B*) and pseudoscalar (D, B) mesons have been calculated numerically in lattice QCD, where the pion mass (which is related to the light quark mass) is much larger than its physical value. Naive linear chiral extrapolations of the lattice data to the physical mass of the pion lead to hyperfine splittings which are smaller than experimental data. In order to extrapolate these lattice data to the physical mass of the pion more reasonably, we apply the effective chiral perturbation theory for heavy mesons, which is invariant under chiral symmetry when the light quark masses go to zero and heavy quark symmetry when the heavy quark masses go to infinity. This leads to a phenomenological functional form with three parameters to extrapolate the lattice data. It is found that the extrapolated hyperfine splittings are even smaller than those obtained using linear extrapolation. We conclude that the source of the discrepancy between lattice data for hyperfine splittings and experiment must lie in non-chiral physics.Comment: 27 pages, 6 figure

    Measurement of D*±, D± and Ds± meson production cross sections in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The production of D∗±, D± and D±s charmed mesons has been measured with the ATLAS detector in pp collisions at √s= 7 TeV at the LHC, using data corresponding to an integrated luminosity of 280 nb−1. The charmed mesons have been reconstructed in the range of transverse momentum 3.5 <pT(D) <100 GeV and pseudorapidity |η(D)| <2.1. The differential cross sections as a function of transverse momentum and pseudorapidity were measured for D∗± and D± production. The next-to-leading-order QCD predictions are consistent with the data in the visible kinematic region within the large theoretical uncertainties. Using the visible D cross sections and an extrapolation to the full kinematic phase space, the strangeness-suppression factor in charm fragmentation, the fraction of charged non-strange D mesons produced in a vector state, and the total cross section of charm production at √s= 7 TeV were derived

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    A meta-analysis on the impact of different matrix structures on species movement rates

    No full text
    Many biodiversity conservation strategies aim to increase species movement by changing the landscape between suitable areas of habitat. We applied systematic review and meta-analytical methods to robustly assess evidence on the impact of matrix structure on movement rates, with the hypothesis that movement will be greater through matrix of a more similar structure (vegetation height and cover) to the home habitat. Twenty studies of movement through two or more different matrix types provided 107 effect sizes, expressing the difference between the relative movement rates in different matrix types. The studies were all on animals, including relatively mobile taxa such as birds and butterflies but also rodents and amphibians. We were able to detect that on average, movement was greater through matrix of a more similar structure to the speciesĂąïżœïżœ habitat despite the variation in studies in terms of matrix types, species and methods. The effect size was larger when there was a greater difference in the structure of the two matrix types being compared (e.g. comparing grassland to forest rather than short grass to long grass). However, there was a high degree of covariation between matrix contrast and studies and other significant subgroupings such as taxonomic group and matrix openness. The biological significance of the increase in movement is not clear; however, ecological theory predicts dispersing individuals are important for population dynamics. Changes to the structure of landscapes intended to improve permeability to movement are supported by the findings of this study, particularly for relatively mobile species. However, research over longer timescales, greater distances and range of taxonomic groups is necessary
    corecore