150 research outputs found

    Partial flap avulsion following refractive surgery

    Get PDF

    A Subset of Latency-Reversing Agents Expose HIV-Infected Resting CD4⁺ T-Cells to Recognition by Cytotoxic T-Lymphocytes

    Get PDF
    Resting CD4⁺ T-cells harboring inducible HIV proviruses are a critical reservoir in antiretroviral therapy (ART)-treated subjects. These cells express little to no viral protein, and thus neither die by viral cytopathic effects, nor are efficiently cleared by immune effectors. Elimination of this reservoir is theoretically possible by combining latency-reversing agents (LRAs) with immune effectors, such as CD8⁺ T-cells. However, the relative efficacy of different LRAs in sensitizing latently-infected cells for recognition by HIV-specific CD8⁺ T-cells has not been determined. To address this, we developed an assay that utilizes HIV-specific CD8⁺ T-cell clones as biosensors for HIV antigen expression. By testing multiple CD8⁺ T-cell clones against a primary cell model of HIV latency, we identified several single agents that primed latently-infected cells for CD8⁺ T-cell recognition, including IL-2, IL-15, two IL-15 superagonists (IL-15SA and ALT-803), prostratin, and the TLR-2 ligand Pam₃CSK₄. In contrast, we did not observe CD8⁺ T-cell recognition of target cells following treatment with histone deacetylase inhibitors or with hexamethylene bisacetamide (HMBA). In further experiments we demonstrate that a clinically achievable concentration of the IL-15 superagonist ‘ALT-803’, an agent presently in clinical trials for solid and hematological tumors, primes the natural ex vivo reservoir for CD8⁺ T-cell recognition. Thus, our results establish a novel experimental approach for comparative evaluation of LRAs, and highlight ALT-803 as an LRA with the potential to synergize with CD8⁺ T-cells in HIV eradication strategies.United States. National Institutes of Health (AI111860

    Determinant Factors of Dividend Payments in Brazil

    Get PDF
    This study identifies factors that shaped cash disbursement distribution policies employed by Brazilian public companies listed on the Brazilian Securities, Commodities and Futures Exchange (BM&FBOVESPA) from 1995 to 2011. Relationships between Dividends/Total Assets and potential determinants discussed in the literature, including firm size, corporate governance, profitability, leverage, market to book, liquidity, investment, risk, profit growth, information asymmetry and agency conflict, are examined. The following econometric methods are employed: (1) Tobit, given the nature of the dividend data, and (2) the Generalized Method of Moments (GMM) to control for endogenous regressors. Significant positive variables found include size, return on assets (ROA), market to book, liquidity and profit growth. It can thus be inferred that larger firm size, profitability, market value, liquidity and profit growth correlate with greater firm pro pensity to distribute money to shareholders, thus supporting the theory of corporate finance. Significant negative variables found include leverage, liquidity squared, capex, beta and tag along 100%. It is thus inferred that more significantly leveraged companies that invest more heavily in fixed assets and that exhibit high liquidity, higher risk and less conflict between controlling and minority shareholders will be less likely to pay dividends to shareholders.</p

    Randomized trial of thymectomy in myasthenia gravis

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus

    Get PDF
    Background: Multiple laboratory tests are used to diagnose and manage patients with diabetes mellitus. The quality of the scientific evidence supporting the use of these tests varies substantially. Approach: An expert committee compiled evidence-based recommendations for the use of laboratory testing for patients with diabetes. A new system was developed to grade the overall quality of the evidence and the strength of the recommendations. Draft guidelines were posted on the Internet and presented at the 2007 Arnold O. Beckman Conference. The document was modified in response to oral and written comments, and a revised draft was posted in 2010 and again modified in response to written comments. The National Academy of Clinical Biochemistry and the Evidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry jointly reviewed the guidelines, which were accepted after revisions by the Professional Practice Committee and subsequently approved by the Executive Committee of the American Diabetes Association. Content: In addition to long-standing criteria based on measurement of plasma glucose, diabetes can be diagnosed by demonstrating increased blood hemoglobin A1c_{1c} (HbA1c_{1c}) concentrations. Monitoring of glycemic control is performed by self-monitoring of plasma or blood glucose with meters and by laboratory analysis of HbA1c_{1c}. The potential roles of noninvasive glucose monitoring, genetic testing, and measurement of autoantibodies, urine albumin, insulin, proinsulin, C-peptide, and other analytes are addressed. Summary: The guidelines provide specific recommendations that are based on published data or derived from expert consensus. Several analytes have minimal clinical value at present, and their measurement is not recommended
    corecore