136 research outputs found

    Impaired fatty acid metabolism perpetuates lipotoxicity along the transition to chronic kidney injury.

    Get PDF
    Energy metabolism failure in proximal tubule cells (PTCs) is a hallmark of chronic kidney injury. We combined transcriptomic, metabolomic, and lipidomic approaches in experimental models and patient cohorts to investigate the molecular basis of the progression to chronic kidney allograft injury initiated by ischemia/reperfusion injury (IRI). The urinary metabolome of kidney transplant recipients with chronic allograft injury and who experienced severe IRI was substantially enriched with long chain fatty acids (FAs). We identified a renal FA-related gene signature with low levels of carnitine palmitoyltransferase 2 (Cpt2) and acyl-CoA synthetase medium chain family member 5 (Acsm5) and high levels of acyl-CoA synthetase long chain family member 4 and 5 (Acsl4 and Acsl5) associated with IRI, transition to chronic injury, and established chronic kidney disease in mouse models and kidney transplant recipients. The findings were consistent with the presence of Cpt2-Acsl4+Acsl5+Acsm5- PTCs failing to recover from IRI as identified by single-nucleus RNA-Seq. In vitro experiments indicated that ER stress contributed to CPT2 repression, which, in turn, promoted lipids' accumulation, drove profibrogenic epithelial phenotypic changes, and activated the unfolded protein response. ER stress through CPT2 inhibition and lipid accumulation engaged an auto-amplification loop leading to lipotoxicity and self-sustained cellular stress. Thus, IRI imprints a persistent FA metabolism disturbance in the proximal tubule, sustaining the progression to chronic kidney allograft injury

    Genetic polymorphisms in MDR1, CYP3A4 and CYP3A5 genes in a Ghanaian population: a plausible explanation for altered metabolism of ivermectin in humans?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ivermectin, a substrate of multidrug resistance (MDR1) gene and cytochrome P450 (CYP) 3A4, has been used successfully in the treatment of onchocerciasis in Ghana. However, there have been reports of suboptimal response in some patients after repeated treatment. Polymorphisms in host MDR1 and CYP3A genes may explain the observed suboptimal response to ivermectin. We genotyped relevant functional polymorphisms of MDR1 and CYP3A in a random sample of healthy Ghanaians and compared the data with that of ivermectin-treated patients with a view to exploring the relationship between suboptimal response to ivermectin and MDR1 and CYP3A allelic frequencies.</p> <p>Methods</p> <p>Using PCR-RFLP, relevant polymorphic alleles of MDR1 and CYP3A4 genes were analysed in 204 randomly selected individuals and in 42 ivermectin treated patients.</p> <p>Results</p> <p>We recorded significantly higher MDR1 (3435T) variant allele frequency in suboptimal responders (21%) than in patients who responded to treatment (12%) or the random population sample (11%). <it>CYP3A4*1B</it>, <it>CYP3A5*3 </it>and <it>CYP3A5*6 </it>alleles were detected at varied frequencies for the sampled Ghanaian population, responders and suboptimal responders to ivermectin. <it>CYP3A5*1/CYP3A5*1 </it>and <it>CYP3A5*1/CYP3A5*3 </it>genotypes were also found to be significantly different for responders and suboptimal responders. Haplotype (*1/*1/*3/*1) was determined to be significantly different between responders and suboptimal responders indicating a possible role of these haplotypes in treatment response with ivermectin.</p> <p>Conclusion</p> <p>A profile of pharmacogenetically relevant variants for MDR1, CYP3A4 and CYP3A5 genes has been generated for a random population of 204 Ghanaians to address the scarcity of data within indigenous African populations. In 42 patients treated with ivermectin, difference in MDR1 variant allele frequency was observed between suboptimal responders and responders.</p

    MicroRNA Fingerprints Identify miR-150 as a Plasma Prognostic Marker in Patients with Sepsis

    Get PDF
    BACKGROUND: The physiopathology of sepsis continues to be poorly understood, and despite recent advances in its management, sepsis is still a life-threatening condition with a poor outcome. If new diagnostic markers related to sepsis pathogenesis will be identified, new specific therapies might be developed and mortality reduced. Small regulatory non-coding RNAs, microRNAs (miRNAs), were recently linked to various diseases; the aim of our prospective study was to identify miRNAs that can differentiate patients with early-stage sepsis from healthy controls and to determine if miRNA levels correlate with the severity assessed by the Sequential Organ Failure Assessment (SOFA) score. METHODOLOGY/PRINCIPAL FINDINGS: By using genome-wide miRNA profiling by microarray in peripheral blood leukocytes, we found that miR-150, miR-182, miR-342-5p, and miR-486 expression profiles differentiated sepsis patients from healthy controls. We also proved by quantitative reverse transcription-polymerase chain reaction that miR-150 levels were significantly reduced in plasma samples of sepsis patients and correlated with the level of disease severity measured by the SOFA score, but were independent of the white blood counts (WBC). We found that plasma levels of tumor necrosis factor alpha, interleukin-10, and interleukin-18, all genes with sequence complementarity to miR-150, were negatively correlated with the plasma levels of this miRNA. Furthermore, we identified that the plasma levels ratio for miR-150/interleukin-18 can be used for assessing the severity of the sepsis. CONCLUSIONS/SIGNIFICANCE: We propose that miR-150 levels in both leukocytes and plasma correlate with the aggressiveness of sepsis and can be used as a marker of early sepsis. Furthermore, we envision miR-150 restoration as a future therapeutic option in sepsis patients

    The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation

    Get PDF
    Purpose: In children, data on the combined impact of age, genotype, and disease severity on tacrolimus (TAC) disposition are scarce. The aim of this study was to evaluate the effect of these covariates on tacrolimus dose requirements in the immediate post-transplant period in pediatric kidney and liver recipients. Methods: Data were retrospectively collected describing tacrolimus disposition, age, CYP3A5 and ABCB1 genotype, and pediatric risk of mortality (PRISM) scores for up to 14 days post-transplant in children receiving liver and renal transplants. Initial TAC dosing was equal in all patients and adjusted using therapeutic drug monitoring. We determined the relationship between covariates and tacrolimus disposition. Results: Forty-eight kidney and 42 liver transplant recipients (median ages 11.5 and 1.5 years, ranges 1.5-17.7 and 0.05-14.8 years, respectively) received TAC post-transplant. In both transplant groups, younger children (<5 years) needed higher TAC doses than older children [kidney: 0.15 (0.07-0.35) vs. 0.09 (0.02-0.20) mg/kg/12h, p = 0.046, liver: 0.12 (0.04-0.32) vs. 0.09 (0.01-0.18) mg/kg/12h, p

    MicroRNA-135b Regulates Leucine Zipper Tumor Suppressor 1 in Cutaneous Squamous Cell Carcinoma

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness

    Copy number variation of microRNA genes in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are important genetic elements that regulate the expression of thousands of human genes. Polymorphisms affecting miRNA biogenesis, dosage and target recognition may represent potentially functional variants. The functional consequences of single nucleotide polymorphisms (SNPs) within critical miRNA sequences and outside of miRNA genes were previously demonstrated using both experimental and computational methods. However, little is known about how copy number variations (CNVs) affect miRNA genes.</p> <p>Results</p> <p>In this study, we analyzed the co-localization of all miRNA <it>loci </it>with known CNV regions. Using bioinformatic tools we identified and validated 209 copy number variable miRNA genes (CNV-miRNAs) in CNV regions deposited in Database of Genomic Variations (DGV) and 11 CNV-miRNAs in two sets of CNVs defined as highly polymorphic. We propose potential mechanisms of CNV-mediated variation of functional copies of miRNAs (dosage) for different types of CNVs overlapping miRNA genes. We also showed that, consistent with their essential biological functions, miRNA <it>loci </it>are underrepresented in highly polymorphic and well-validated CNV regions.</p> <p>Conclusion</p> <p>We postulate that CNV-miRNAs are potential functional variants and should be considered high priority candidate variants in genotype-phenotype association studies.</p

    Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths

    Get PDF
    Publisher Copyright: © 2021 The Authors, some rights reserved.Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/ml; in plasma diluted 1:10) of IFN-alpha and/or IFN-omega are found in about 10% of patients with critical COVID-19 (coronavirus disease 2019) pneumonia but not in individuals with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-alpha and/or IFN-omega (100 pg/ml; in 1:10 dilutions of plasma) in 13.6% of 3595 patients with critical COVID-19, including 21% of 374 patients >80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1124 deceased patients (aged 20 days to 99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-beta. We also show, in a sample of 34,159 uninfected individuals from the general population, that auto-Abs neutralizing high concentrations of IFN-alpha and/or IFN-omega are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of individuals carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals 80 years. By contrast, auto-Abs neutralizing IFN-beta do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over 80s and total fatal COVID-19 cases.Peer reviewe
    corecore