4,573 research outputs found

    Asymmetric synthesis of gonytolide A: strategic use of an aryl halide blocking group for oxidative coupling

    Full text link
    The first synthesis of the chromanone lactone dimer gonytolide A has been achieved employing vanadium(V)-mediated oxidative coupling of the monomer gonytolide C. An o-bromine blocking group strategy was employed to favor para- para coupling and to enable kinetic resolution of (±)-gonytolide C. Asymmetric conjugate reduction enabled practical kinetic resolution of a chiral, racemic precursor and the asymmetric synthesis of (+)-gonytolide A and its atropisomer.We thank the National Institutes of Health (R35 GM-118173) for research support. Work at the BU-CMD is supported by NIH R24 Grant GM-111625. We thank Prof. Scott Miller and Dr. Anthony Metrano (Yale University) for helpful discussions and preliminary experiments. We thank the Uehara Memorial Foundation for a postdoctoral fellowship to T.I., the American Cancer Society for a postdoctoral fellowship to K.D.R. (PF-16-235-01-CDD), Dr. Jeffrey Bacon (Boston University) for X-ray crystal structure analyses, and Prof. Haruhisa Kikuchi (Tohoku University) for providing a natural sample of gonytolide A. NMR (CHE-0619339) and MS (CHE-0443618) facilities at Boston University are supported by the NSF. (R35 GM-118173 - National Institutes of Health; GM-111625 - NIH; Uehara Memorial Foundation; PF-16-235-01-CDD - American Cancer Society; CHE-0619339 - NSF; CHE-0443618 - NSF

    Observational Tests of the Mass-Temperature Relation for Galaxy Clusters

    Get PDF
    We examine the relationship between the mass and x-ray gas temperature of galaxy clusters using data drawn from the literature. Simple theoretical arguments suggest that the mass of a cluster is related to the x-ray temperature as MTx3/2M \propto T_x^{3/2}. Virial theorem mass estimates based on cluster galaxy velocity dispersions seem to be accurately described by this scaling with a normalization consistent with that predicted by the simulations of Evrard, Metzler, & Navarro (1996). X-ray mass estimates which employ spatially resolved temperature profiles also follow a Tx3/2T_x^{3/2} scaling although with a normalization about 40% lower than that of the fit to the virial masses. However, the isothermal β\beta-model and x-ray surface brightness deprojection masses follow a steeper Tx1.82.0\propto T_x^{1.8-2.0} scaling. The steepness of the isothermal estimates is due to their implicitly assumed dark matter density profile of ρ(r)r2\rho(r) \propto r^{-2} at large radii while observations and simulations suggest that clusters follow steeper profiles (e.g., ρ(r)r2.4\rho(r) \propto r^{-2.4}).Comment: 25 pages, 10 figures, accepted by Ap

    Quasi-spin Model for Macroscopic Quantum Tunnelling between Two Coupled Bose-Einstein Condensates

    Full text link
    The macroscopic quantum tunneling between two coupled Bose-Einstein condensates (BEC) (radio-frequency coupled two-component BECs or two BECs confined in a double-well potential) is mapped onto the tunneling of an uniaxial spin with an applied magnetic field. The tunneling exponent is calculated with an imaginary-time path-integral method. In the limit of low barrier, the dependence of tunneling exponent on the system parameters is obtained, and the crossover temperature from thermal regime to quantum regime is estimated. The detailed information about the tunnelling will give help to control population conversion between coupled BECs and realize quantum computation with coupled BECs.Comment: 20 pages, 4 figures, accepted by Phys.Rev.

    NLRP3 inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Muenzer, P., Negro, R., Fukui, S., di Meglio, L., Aymonnier, K., Chu, L., Cherpokova, D., Gutch, S., Sorvillo, N., Shi, L., Magupalli, V. G., Weber, A. N. R., Scharf, R. E., Waterman, C. M., Wu, H., & Wagner, D. D. NLRP3 inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions. Frontiers in Immunology, 12, (2021): 683803, https://doi.org/10.3389/fimmu.2021.683803.Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum of human disorders. While NETosis is known to be regulated by peptidylarginine deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not addressed. Here, we establish that under sterile conditions the cannonical NLRP3 inflammasome participates in NETosis. We show apoptosis-associated speck-like protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation, because NLRP3 supported both nuclear envelope and plasma membrane rupture. Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in thrombi produced by a stenosis-induced mouse model of deep vein thrombosis. Altogether, our results indicate a PAD4-dependent formation of the NLRP3 inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious conditions in vitro and in vivo.This work was supported by a grant from National Heart, Lung, and Blood Institute of the National Institutes of Health (grant R35 HL135765) and a Steven Berzin family support to DDW, an Individual Erwin Deutsch fellowship by the German, Austrian and Swiss Society of Thrombosis and Hemostasis Research to RES, a Whitman fellowship (MBL) to DDW, and an Individual Marie Skłodowska-Curie Actions fellowship by the European Commission (796365 - COAGULANT) to PM. ANRW was funded by the Deutsche Forschungsgemeinschaft (TRR156/2 –246807620) and a research grant (We-4195/15-19). CMW was supported by the Division of Intramural Research, NHLBI, NIH

    The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity

    Get PDF
    We have made the largest-volume measurement to date of the transition to large-scale homogeneity in the distribution of galaxies. We use the WiggleZ survey, a spectroscopic survey of over 200,000 blue galaxies in a cosmic volume of ~1 (Gpc/h)^3. A new method of defining the 'homogeneity scale' is presented, which is more robust than methods previously used in the literature, and which can be easily compared between different surveys. Due to the large cosmic depth of WiggleZ (up to z=1) we are able to make the first measurement of the transition to homogeneity over a range of cosmic epochs. The mean number of galaxies N(<r) in spheres of comoving radius r is proportional to r^3 within 1%, or equivalently the fractal dimension of the sample is within 1% of D_2=3, at radii larger than 71 \pm 8 Mpc/h at z~0.2, 70 \pm 5 Mpc/h at z~0.4, 81 \pm 5 Mpc/h at z~0.6, and 75 \pm 4 Mpc/h at z~0.8. We demonstrate the robustness of our results against selection function effects, using a LCDM N-body simulation and a suite of inhomogeneous fractal distributions. The results are in excellent agreement with both the LCDM N-body simulation and an analytical LCDM prediction. We can exclude a fractal distribution with fractal dimension below D_2=2.97 on scales from ~80 Mpc/h up to the largest scales probed by our measurement, ~300 Mpc/h, at 99.99% confidence.Comment: 21 pages, 16 figures, accepted for publication in MNRA

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Investigating Shared Genetic Basis Across Tourette Syndrome and Comorbid Neurodevelopmental Disorders Along the Impulsivity-Compulsivity Spectrum

    Get PDF
    Background Tourette syndrome (TS) is often found comorbid with other neurodevelopmental disorders across the impulsivity-compulsivity spectrum, with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) as most prevalent. This points to the possibility of a common etiological thread along an impulsivity-compulsivity continuum. Methods Investigating the shared genetic basis across TS, ADHD, ASD, and OCD, we undertook an evaluation of cross-disorder genetic architecture and systematic meta-analysis, integrating summary statistics from the latest genome-wide association studies (93,294 individuals, 6,788,510 markers). Results As previously identified, a common unifying factor connects TS, ADHD, and ASD, while TS and OCD show the highest genetic correlation in pairwise testing among these disorders. Thanks to a more homogeneous set of disorders and a targeted approach that is guided by genetic correlations, we were able to identify multiple novel hits and regions that seem to play a pleiotropic role for the specific disorders analyzed here and could not be identified through previous studies. In the TS-ADHD-ASD genome-wide association study single nucleotide polymorphism–based and gene-based meta-analysis, we uncovered 13 genome-wide significant regions that host single nucleotide polymorphisms with a high posterior probability for association with all three studied disorders (m-value > 0.9), 11 of which were not identified in previous cross-disorder analysis. In contrast, we also identified two additional pleiotropic regions in the TS-OCD meta-analysis. Through conditional analysis, we highlighted genes and genetic regions that play a specific role in a TS-ADHD-ASD genetic factor versus TS-OCD. Cross-disorder tissue specificity analysis implicated the hypothalamus-pituitary-adrenal gland axis in TS-ADHD-ASD. Conclusions Our work underlines the value of redefining the framework for research across traditional diagnostic categories.publishedVersio

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic
    corecore