404 research outputs found
Cyclic, ekpyrotic and little rip universe in modified gravity
We propose the reconstruction of gravity in such a way that
corresponding theory admits cyclic and ekpyrotic universe solutions. The number
of explicit examples of such model is found. The comparison with the
reconstructed scalar-tensor theory is made. We also present gravity
which provides the little rip evolution and gives the realistic gravitational
alternative for CDM cosmology. The time for little rip dissolution of
bound structures in such theory is estimated. We demonstrate that transformed
little rip solution becomes qualitatively different cosmological
solution with Big Bang type singularity in Einstein frame.Comment: LaTeX 11 pages, no figure, typos correcte
Is exponential gravity a viable description for the whole cosmological history?
Here we analysed a particular type of gravity, the so-called
exponential gravity which includes an exponential function of the Ricci scalar
in the action. Such term represents a correction to the usual Hilbert-Einstein
action. By using Supernovae Ia, Barionic Acoustic Oscillations, Cosmic
Microwave Background and data, the free parameters of the model are well
constrained. The results show that such corrections to General Relativity
become important at cosmological scales and at late-times, providing an
alternative to the dark energy problem. In addition, the fits do not determine
any significant difference statistically with respect to the CDM
model. Finally, such model is extended to include the inflationary epoch in the
same gravitational Lagrangian. As shown in the paper, the additional terms can
reproduce the inflationary epoch and satisfy the constraints from Planck data.Comment: 20 pages, 6 figures, analysis extended, version published in EPJ
Cosmological entropy and generalized second law of thermodynamics in theory of gravity
We consider a spatially flat Friedmann-Lemaitre-Robertson-Walker space time
and investigate the second law and the generalized second law of thermodynamics
for apparent horizon in generalized modified Gauss Bonnet theory of gravity
(whose action contains a general function of Gauss Bonnet invariant and the
Ricci scalar: ). By assuming that the apparent horizon is in thermal
equilibrium with the matter inside it, conditions which must be satisfied by
are derived and elucidated through two examples: a quasi-de Sitter
space-time and a universe with power law expansion.Comment: 10 pages, minor changes, typos corrected, accepted for publication in
Europhysics Letter
Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells
Carbon assimilating fungi from surface ocean to subseafloor revealed by coupled phylogenetic and stable isotope analysis
Fungi are ubiquitous in the ocean and hypothesized to be important members of marine ecosystems, but their roles in the marine carbon cycle are poorly understood. Here, we use 13C DNA stable isotope probing coupled with phylogenetic analyses to investigate carbon assimilation within diverse communities of planktonic and benthic fungi in the Benguela Upwelling System (Namibia). Across the redox stratified water column and in the underlying sediments, assimilation of 13C-labeled carbon from diatom extracellular polymeric substances (13C-dEPS) by fungi correlated with the expression of fungal genes encoding carbohydrate-active enzymes. Phylogenetic analysis of genes from 13C-labeled metagenomes revealed saprotrophic lineages related to the facultative yeast Malassezia were the main fungal foragers of pelagic dEPS. In contrast, fungi living in the underlying sulfidic sediments assimilated more 13C-labeled carbon from chemosynthetic bacteria compared to dEPS. This coincided with a unique seafloor fungal community and dissolved organic matter composition compared to the water column, and a 100-fold increased fungal abundance within the subseafloor sulfide-nitrate transition zone. The subseafloor fungi feeding on 13C-labeled chemolithoautotrophs under anoxic conditions were affiliated with Chytridiomycota and Mucoromycota that encode cellulolytic and proteolytic enzymes, revealing polysaccharide and protein-degrading fungi that can anaerobically decompose chemosynthetic necromass. These subseafloor fungi, therefore, appear to be specialized in organic matter that is produced in the sediments. Our findings reveal that the phylogenetic diversity of fungi across redox stratified marine ecosystems translates into functionally relevant mechanisms helping to structure carbon flow from primary producers in marine microbiomes from the surface ocean to the subseafloor
Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).
Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)
- …
