66 research outputs found

    Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment

    Get PDF
    Animals detect light using opsin photopigments. Xenopsin, a recently classified subtype of opsin, challenges our views on opsin and photoreceptor evolution. Originally thought to belong to the Gαi-coupled ciliary opsins, xenopsins are now understood to have diverged from ciliary opsins in pre-bilaterian times, but little is known about the cells that deploy these proteins, or if they form a photopigment and drive phototransduction. We characterized xenopsin in a flatworm, Maritigrella crozieri, and found it expressed in ciliary cells of eyes in the larva, and in extraocular cells around the brain in the adult. These extraocular cells house hundreds of cilia in an intra-cellular vacuole (phaosome). Functional assays in human cells show Maritigrella xenopsin drives phototransduction primarily by coupling to Gαi. These findings highlight similarities between xenopsin and c-opsin and reveal a novel type of opsin-expressing cell that, like jawed vertebrate rods, encloses the ciliary membrane within their own plasma membrane

    Gene Regulatory Network Interactions in Sea Urchin Endomesoderm Induction

    Get PDF
    A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm–gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell–GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFβ cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification

    The genome of the sea urchin Strongylocentrotus purpuratus

    Get PDF
    We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes

    Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin

    Get PDF
    Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA–binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals

    The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Get PDF
    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.This work was supported by the following grants: NHGRIU54HG003273 to R.A.G; EU Marie Curie ITN #215781 “Evonet” to M.A.; a Wellcome Trust Value in People (VIP) award to C.B. and Wellcome Trust graduate studentship WT089615MA to J.E.G; Marine rhythms of Life” of the University of Vienna, an FWF (http://www.fwf.ac.at/) START award (#AY0041321) and HFSP (http://www.hfsp.org/) research grant (#RGY0082/2010) to KT-­‐R; MFPL Vienna International PostDoctoral Program for Molecular Life Sciences (funded by Austrian Ministry of Science and Research and City of Vienna, Cultural Department -­‐Science and Research to T.K; Direct Grant (4053034) of the Chinese University of Hong Kong to J.H.L.H.; NHGRI HG004164 to G.M.; Danish Research Agency (FNU), Carlsberg Foundation, and Lundbeck Foundation to C.J.P.G.; U.S. National Institutes of Health R01AI55624 to J.H.W.; Royal Society University Research fellowship to F.M.J.; P.D.E. was supported by the BBSRC via the Babraham Institute;This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pbio.100200

    Patterning of the Dorsal-Ventral Axis in Echinoderms: Insights into the Evolution of the BMP-Chordin Signaling Network

    Get PDF
    Formation of the dorsal-ventral axis of the sea urchin embryo relies on cell interactions initiated by the TGF beta Nodal. Intriguingly, although nodal expression is restricted to the ventral side of the embryo, Nodal function is required for specification of both the ventral and the dorsal territories and is able to restore both ventral and dorsal regions in nodal morpholino injected embryos. The molecular basis for the long-range organizing activity of Nodal is not understood. In this paper, we provide evidence that the long-range organizing activity of Nodal is assured by a relay molecule synthesized in the ventral ectoderm, then translocated to the opposite side of the embryo. We identified this relay molecule as BMP2/4 based on the following arguments. First, blocking BMP2/4 function eliminated the long-range organizing activity of an activated Nodal receptor in an axis rescue assay. Second, we demonstrate that BMP2/4 and the corresponding type I receptor Alk3/6 functions are both essential for specification of the dorsal region of the embryo. Third, using anti-phospho-Smad1/5/8 immunostaining, we show that, despite its ventral transcription, the BMP2/4 ligand triggers receptor mediated signaling exclusively on the dorsal side of the embryo, one of the most extreme cases of BMP translocation described so far. We further report that the pattern of pSmad1/5/8 is graded along the dorsal-ventral axis and that two BMP2/4 target genes are expressed in nested patterns centered on the region with highest levels of pSmad1/5/8, strongly suggesting that BMP2/4 is acting as a morphogen. We also describe the very unusual ventral co-expression of chordin and bmp2/4 downstream of Nodal and demonstrate that Chordin is largely responsible for the spatial restriction of BMP2/4 signaling to the dorsal side. Thus, unlike in most organisms, in the sea urchin, a single ventral signaling centre is responsible for induction of ventral and dorsal cell fates. Finally, we show that Chordin may not be required for long-range diffusion of BMP2/4, describe a striking dorsal-ventral asymmetry in the expression of Glypican 5, a heparin sulphated proteoglycan that regulates BMP mobility, and show that this asymmetry depends on BMP2/4 signaling. Our study provides new insights into the mechanisms by which positional information is established along the dorsal-ventral axis of the sea urchin embryo, and more generally on how a BMP morphogen gradient is established in a multicellular embryo. From an evolutionary point of view, it highlights that although the genes used for dorsal-ventral patterning are highly conserved in bilateria, there are considerable variations, even among deuterostomes, in the manner these genes are used to shape a BMP morphogen gradient

    The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

    Get PDF

    Dosimétrie par thermoluminescence

    No full text
    Le but de cet article est de donner un bref aperçu sur les principes de base et une approche théorique de la thermoluminescence. Après une présentation du modèle classique de base et des divers types de recombinaison électron-trou, l'application à la dosimétrie des rayonnements ionisants est développée
    corecore