2,639 research outputs found
An example of spectral phase transition phenomenon in a class of Jacobi matrices with periodically modulated weights
We consider self-adjoint unbounded Jacobi matrices with diagonal q_n=n and
weights \lambda_n=c_n n, where c_n is a 2-periodical sequence of real numbers.
The parameter space is decomposed into several separate regions, where the
spectrum is either purely absolutely continuous or discrete. This constitutes
an example of the spectral phase transition of the first order. We study the
lines where the spectral phase transition occurs, obtaining the following main
result: either the interval (-\infty;1/2) or the interval (1/2;+\infty) is
covered by the absolutely continuous spectrum, the remainder of the spectrum
being pure point. The proof is based on finding asymptotics of generalized
eigenvectors via the Birkhoff-Adams Theorem. We also consider the degenerate
case, which constitutes yet another example of the spectral phase transition
Systematic Investigations of the Free Fermionic Heterotic String Gauge Group Statistics: Layer 1 Results
Using software under development at Baylor University, we explicitly
construct all layer 1 gauge, weakly coupled free fermionic heterotic string
models up to order 22 in four large space-time dimensions. The gauge models
consist primarily of gauge content making a systematic construction process
efficient. We present an overview of the model building procedure, redundancies
in the process, methods used to reduce such redundancies and statistics
regarding the occurrence of various combinations of gauge group factors and GUT
groups. Statistics for both N=4 and N=0 models are presented.Comment: 11 pages, 7 figures, 4 table
High-precision measurement of the half-life of Ga
The beta-decay half-life of 62Ga has been studied with high precision using
on-line mass separated samples. The decay of 62Ga which is dominated by a 0+ to
0+ transition to the ground state of 62Zn yields a half-life of T_{1/2} =
116.19(4) ms. This result is more precise than any previous measurement by
about a factor of four or more. The present value is in agreement with older
literature values, but slightly disagrees with a recent measurement. We
determine an error weighted average value of all experimental half-lives of
116.18(4) ms.Comment: 9 pages, 5 figures, accepted for publication in PR
Proton Drip-Line Calculations and the Rp-process
One-proton and two-proton separation energies are calculated for proton-rich
nuclei in the region . The method is based on Skyrme Hartree-Fock
calculations of Coulomb displacement energies of mirror nuclei in combination
with the experimental masses of the neutron-rich nuclei. The implications for
the proton drip line and the astrophysical rp-process are discussed. This is
done within the framework of a detailed analysis of the sensitivity of rp
process calculations in type I X-ray burst models on nuclear masses. We find
that the remaining mass uncertainties, in particular for some nuclei with
, still lead to large uncertainties in calculations of X-ray burst light
curves. Further experimental or theoretical improvements of nuclear mass data
are necessary before observed X-ray burst light curves can be used to obtain
quantitative constraints on ignition conditions and neutron star properties. We
identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table
On Unbounded Composition Operators in -Spaces
Fundamental properties of unbounded composition operators in -spaces are
studied. Characterizations of normal and quasinormal composition operators are
provided. Formally normal composition operators are shown to be normal.
Composition operators generating Stieltjes moment sequences are completely
characterized. The unbounded counterparts of the celebrated Lambert's
characterizations of subnormality of bounded composition operators are shown to
be false. Various illustrative examples are supplied
Free-standing graphene films embedded in epoxy resin with enhanced thermal properties
The poor thermal conductivity of polymer composites has long been a deterrent to their increased use in high-end aerospace or defence applications. This study describes a new approach for the incorporation of graphene in an epoxy resin, through the addition of graphene as free-standing film in the polymeric matrix. The electrical and thermal conductivity of composites embedding two different free-standing graphene films was compared to composites with embedded carbon nanotube buckypapers (CNT-BP). Considerably higher thermal conductivity values than those achieved with conventional dispersing methods of graphene or CNTs in epoxy resins were obtained. The characterisation was complemented with a study of the structure at the microscale by cross-sectional scanning electron microscopy (SEM) images and a thermogravimetric analysis (TGA). The films are preconditioned in order to incorporate them into the composites, and the complete manufacturing process proposed allows the production and processing of these materials in large batches. The high thermal conductivity obtained for the composites opens the way for their use in demanding thermal management applications, such as electronic enclosures or platforms facing critical temperature loads.European Defence Agency tender No 17.ESI.OP.066. Study on the Impact of Graphene on Defence Application
The rp-process and new measurements of beta-delayed proton decay of light Ag and Cd isotopes
Recent network calculations suggest that a high temperature rp-process could
explain the abundances of light Mo and Ru isotopes, which have long challenged
models of p-process nuclide production. Important ingredients to network
calculations involving unstable nuclei near and at the proton drip line are
-halflives and decay modes, i.e., whether or not -delayed proton
decay takes place. Of particular importance to these network calculation are
the proton-rich isotopes Ag, Ag, Cd and Cd. We
report on recent measurements of -delayed proton branching ratios for
Ag, Ag, and Cd at the on-line mass separator at GSI.Comment: 4 pages, uses espcrc1.sty. Proceedings of the 4th International
Symposium Nuclei in the Cosmos, June 1996, Notre Dame/IN, USA, Ed. M.
Wiescher, to be published in Nucl.Phys.A. Also available at
ftp://ftp.physics.ohio-state.edu/pub/nucex/nic96-gs
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
- …
