25 research outputs found

    Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family

    Get PDF
    In fungi, vegetative incompatibility is a conspecific non-self recognition mechanism that restricts formation of viable heterokaryons when incompatible alleles of specific het loci interact. In Podospora anserina, three non-allelic incompatibility systems have been genetically defined involving interactions between het-c and het-d, het-c and het-e, het-r and het-v. het-d and het-e are paralogues belonging to the HNWD gene family that encode proteins of the STAND class. HET-D and HET-E proteins comprise an N-terminal HET effector domain, a central GTP binding site and a C-terminal WD repeat domain constituted of tandem repeats of highly conserved WD40 repeat units that define the specificity of alleles during incompatibility. The WD40 repeat units of the members of this HNWD family are undergoing concerted evolution. By combining genetic analysis and gain of function experiments, we demonstrate that an additional member of this family, HNWD2, corresponds to the het-r non-allelic incompatibility gene. As for het-d and het-e, allele specificity at the het-r locus is determined by the WD repeat domain. Natural isolates show allelic variation for het-

    Dynamics and Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome Evolution

    Get PDF
    Plant genomes are generally very large, mostly paleopolyploid, and have numerous gene duplicates and complex genomic features such as repeats and transposable elements. Many of these features have been hypothesized to enable plants, which cannot easily escape environmental challenges, to rapidly adapt. Another mechanism, which has recently been well described as a major facilitator of rapid adaptation in bacteria, animals, and fungi but not yet for plants, is modular rearrangement of protein-coding genes. Due to the high precision of profile-based methods, rearrangements can be well captured at the protein level by characterizing the emergence, loss, and rearrangements of protein domains, their structural, functional, and evolutionary building blocks. Here, we study the dynamics of domain rearrangements and explore their adaptive benefit in 27 plant and 3 algal genomes. We use a phylogenomic approach by which we can explain the formation of 88% of all arrangements by single-step events, such as fusion, fission, and terminal loss of domains. We find many domains are lost along every lineage, but at least 500 domains are novel, that is, they are unique to green plants and emerged more or less recently. These novel domains duplicate and rearrange more readily within their genomes than ancient domains and are overproportionally involved in stress response and developmental innovations. Novel domains more often affect regulatory proteins and show a higher degree of structural disorder than ancient domains. Whereas a relatively large and well-conserved core set of single-domain proteins exists, long multi-domain arrangements tend to be species-specific. We find that duplicated genes are more often involved in rearrangements. Although fission events typically impact metabolic proteins, fusion events often create new signaling proteins essential for environmental sensing. Taken together, the high volatility of single domains and complex arrangements in plant genomes demonstrate the importance of modularity for environmental adaptability of plants

    Oxidative DNA Damage Repair and parp 1 and parp 2 Expression in Epstein-Barr Virus-Immortalized B Lymphocyte Cells from Young Subjects, Old Subjects, and Centenarians.

    No full text
    Oxidative DNA damage has been implicated in the aging process and in some of its features such as telomere shortening and replicative senescence. Poly(ADP-ribosyl)ation is involved in many molecular and cellular processes, including DNA damage detection and repair, chromatin modification, transcription, and cell death pathways. We decided to examine the behavior of poly(ADP-ribosyl)ation in centenarians, i.e., those subjects who represent the best example of longevity having reached a very advanced age avoiding the main age-associated diseases. In this study we investigated the relationship between DNA repair capacity and poly(ADP-ribose) polymerase activity in Epstein-Barr virus-immortalized B lymphocyte cell lines from subjects of three different groups of age, including centenarians. Our data show that cells from centenarians have characteristics typical of cells from young people both in their capability of priming the mechanism of repair after H(2)O(2) sublethal oxidative damage and in poly(ADP-ribosyl)ation capacity, while in cells from old subjects these phenomena are delayed or decreased. Moreover, cells from old subjects show a constitutive expression level of both parp 1 and parp 2 genes reduced by a half, together with a reduced presence of modified PARP 1 and other poly(ADP-ribosyl)ated chromatin proteins in comparison to cells from young subjects and centenarians. Our data support the hypothesis that this epigenetic modification is an important regulator of the aging process in humans and it appears to be rather preserved in healthy centenarians, the best example of successful aging

    PARP-1 Regulates Metastatic Melanoma through Modulation of Vimentin-induced Malignant Transformation

    Get PDF
    PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.This work was supported by Ministerio de Ciencia e Innovación SAF2006-01094, SAF2009-13281-C02-01, Fundación La Caixa BM06-219-0 and Junta de Andalucía P07-CTS-0239 and CTS-6602 to FJO, Ministerio de Educación y Ciencia SAF2007-64597; CICYT: SAF2009-13281-C02-02; Junta de Andalucía, P06-CTS-01385 to JMRdA and grants CEIC (P10-CTS5865) and FEDER-ISCIII (PI10/00883) to JCR-M. AGdH has been funded by grants from “Fundación Científica de la Asociación Española Contra el Cáncer”, Ministerio de Ciencia y Tecnología SAF2010-16089, and “Fundación La Marató de TV3”. JCR-M has been funded by Grants CEIC (P1 = -CTS5865) and FEDER-ISCIII (PI10/00883)

    PARP-1 Regulates Metastatic Melanoma through Modulation of Vimentin-induced Malignant Transformation

    Get PDF
    PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.This work was supported by Ministerio de Ciencia e Innovación SAF2006-01094, SAF2009-13281-C02-01, Fundación La Caixa BM06-219-0 and Junta de Andalucía P07-CTS-0239 and CTS-6602 to FJO, Ministerio de Educación y Ciencia SAF2007-64597; CICYT: SAF2009-13281-C02-02; Junta de Andalucía, P06-CTS-01385 to JMRdA and grants CEIC (P10-CTS5865) and FEDER-ISCIII (PI10/00883) to JCR-M. AGdH has been funded by grants from “Fundación Científica de la Asociación Española Contra el Cáncer”, Ministerio de Ciencia y Tecnología SAF2010-16089, and “Fundación La Marató de TV3”. JCR-M has been funded by Grants CEIC (P1 = -CTS5865) and FEDER-ISCIII (PI10/00883)
    corecore