276 research outputs found

    A search for the near-infrared counterpart of the eclipsing millisecond X-ray pulsar Swift J1749.4-2807

    Full text link
    Swift J1749.4-2807 is a transient accreting millisecond X-ray pulsars, the first that displayed X-ray eclipses. Therefore it holds a great potential for accurate mass measurements in a low mass X-ray binary system. The determination of the companion star radial velocity would make it possible to fully resolve the system and to accurately measure the mass of the neutron star based on dynamical measurements. Unfortunately, no optical/NIR counterpart has been identified to date for this system, either in outburst or in quiescence. We performed a photometric study of the field of Swift J1749.4-2807 during quiescence in order to search for the presence of a variable counterpart. The source direction lies on the Galactic plane, making any search for its optical/NIR counterpart challenging. To minimize the effects of field crowding and interstellar extinction, we carried out our observations using the adaptive optics near-infrared imager NACO mounted at the ESO Very Large Telescope. From the analysis of Swift X-ray data obtained during outburst, we derived the most precise (1.6" radius) position for this source. Due to the extreme stellar crowding of the field, 41 sources are detected in our VLT images within the X-ray error circle, with some of them possibly showing variability consistent with the expectations. We carried out the first deep imaging campaign devoted to the search of the quiescent NIR counterpart of Swift J1749.4-2807. Our results allow to provide constraints on the nature of the companion star of this system. Furthermore, they suggest that future phase-resolved NIR observations (performed with large aperture telescopes and adaptive optics) covering the full orbital period of the system are likely to identify the quiescent counterpart of Swift J1749.4-2807, through the measure of its orbital variability, opening the possibility of dynamical studies of this unique source.Comment: 5 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    Simultaneous multiwavelength observations of the Low/Hard State of the X-ray transient source SWIFT J1753.5-0127

    Get PDF
    We report the results of simultaneous multiwavelength observations of the X-ray transient source SWIFT J1753.5-0127 performed with INTEGRAL, RXTE, NTT, REM and VLA on 2005 August 10-12. The source, which underwent an X-ray outburst since 2005 May 30, was observed during the INTEGRAL Target of Opportunity program dedicated to new X-ray novae located in the Galactic Halo. Broad-band spectra and fast timing variability properties of SWIFT J1753.5-0127 are analyzed together with the optical, near infra-red and radio data. We show that the source was significantly detected up to 600 keV with Comptonization parameters and timing properties typical of the so-called Low/Hard State of black hole candidates. We build a spectral energy distribution and we show that SWIFT J1753.5-0127 does not follow the usual radio/X-ray correlation of X-ray binaries in the Low/Hard State. We give estimates of distance and mass. We conclude that SWIFT J1753.5-0127 belongs to the X-ray nova class and that it is likely a black hole candidate transient source of the Galactic Halo which remained in the Low/Hard State during its main outburst. We discuss our results within the context of Comptonization and jet models.Comment: Accepted for publication in ApJ, 25 pages, 4 tables, 11 figures (3 in color

    SN 2013dx associated with GRB 130702A: a detailed photometric and spectroscopic monitoring and a study of the environment

    Get PDF
    Long duration gamma-ray bursts (GRBs) and broad-line, type Ic supernovae (SNe) are strongly connected. We aim at characterizing SN 2013dx, associated with GRB\,130702A, through sensitive and extensive ground-based observational campaigns in the optical-IR band. We monitored the field of the Swift GRB 130702A (redshift z = 0.145) using the 8.2-m VLT, the 3.6-m TNG and the 0.6-m REM telescopes during the time interval between 4 and 40 days after the burst. Photometric and spectroscopic observations revealed the presence of the associated Type Ic SN 2013dx. Our multi-band photometry allowed the construction of a bolometric light curve.} The bolometric light curve of SN 2013dx resembles that of 2003dh (associated with GRB 030329), but is ~10% faster and ~25% dimmer. From this we infer a synthesized 56Ni mass of ~0.2 solar masses. The multi-epoch optical spectroscopy shows that the SN 2013dx behavior is best matched by SN 1998bw, among the other well-known low-redshift SNe associated with GRBs and XRFs, and by SN 2010ah, an energetic Type Ic SN not associated with any GRB. The photospheric velocity of the ejected material declines from ~2.7X10^4 km/s at 8 rest frame days from the explosion, to ~3.5X10^3 km/s at 40 days. These values are extremely close to those of SN1998bw and 2010ah. We deduce for SN 2013dx a kinetic energy of ~35X10^51 erg, and an ejected mass of ~7 solar masses. This suggests that the progenitor of SN2013dx had a mass of ~25 solar masses, i.e., 15-20% less massive than that of SN 1998bw. Finally, we performed a study of the SN 2013dx environment, through spectroscopy of the closeby galaxies. 9 out of the 14 inspected galaxies lie within 0.03 in redshift from z=0.145, indicating that the host of GRB 130702A/SN 2013dx belongs to a group of galaxies, an unprecedented finding for a GRB-associated SN and, to our knowledge, for long GRBs in general

    The X-ray absorbing column density of a complete sample of bright Swift Gamma-Ray Bursts

    Full text link
    A complete sample of bright Swift Gamma-ray Bursts (GRBs) has been recently selected by Salvaterra et al. (2011). The sample has a high level of completeness in redshift (91%). We derive here the intrinsic absorbing X-ray column densities of these GRBs making use of the Swift X-ray Telescope data. This distribution has a mean value of log(NH/cm-2)=21.7+-0.5. This value is consistent with the distribution of the column densities derived from the total sample of GRBs with redshift. We find a mild increase of the intrinsic column density with redshift. This can be interpreted as due to the contribution of intervening systems along the line of sight. Making use of the spectral index connecting optical and X-ray fluxes at 11 hr (beta_OX), we investigate the relation of the intrinsic column density and the GRB `darkness'. We find that there is a very tight correlation between dark GRBs and high X-ray column densities. This clearly indicates that the dark GRBs are formed in a metal-rich environment where dust must be present.Comment: MNRAS, 6 pages, 3 figures, 1 tabl

    Diversity of multiwavelength emission bumps in the GRB 100219A afterglow

    Full text link
    Context. Multi-wavelength observations of gamma-ray burst (GRB) afterglows provide important information about the activity of their central engines and their environments. In particular, the short timescale variability, such as bumps and/or rebrightening features visible in the multi-wavelength light curves, is still poorly understood. Aims. We analyze the multi-wavelength observations of the GRB100219A afterglow at redshift 4.7. In particular, we attempt to identify the physical origin of the late achromatic flares/bumps detected in the X-ray and optical bands. Methods. We present ground-based optical photometric data and Swift X-ray observations on GRB100219A. We analyzed the temporal behavior of the X-ray and optical light curves, as well as the X-ray spectra. Results. The early flares in the X-ray and optical light curves peak simultaneously at about 1000 s after the burst trigger, while late achromatic bumps in the X-ray and optical bands appear at about 20000 s after the burst trigger. These are uncommon features in the afterglow phenomenology. Considering the temporal and spectral properties, we argue that both optical and X-ray emissions come from the same mechanism. The late flares/bumps may be produced by late internal shocks from long-lasting activity of the central engine. An off-axis origin for a structured jet model is also discussed to interpret the bump shapes. The early optical bump can be interpreted as the afterglow onset, while the early X-ray flare could be caused by the internal activity. GRB 100219A exploded in a dense environment as revealed by the strong attenuation of X-ray emission and the optical-to-X-ray spectral energy distribution.Comment: A&A accepte

    A complete sample of bright Swift Long Gamma-Ray Bursts: Sample presentation, Luminosity Function and evolution

    Full text link
    We present a carefully selected sub-sample of Swift Long Gamma-ray Bursts (GRBs), that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, that are bright in the 15-150 keV Swift/BAT band, i.e. with 1-s peak photon fluxes in excess to 2.6 ph s^-1 cm^-2. The sample is composed by 58 bursts, 52 of them with redshift for a completeness level of 90%, while another two have a redshift constraint, reaching a completeness level of 95%. For only three bursts we have no constraint on the redshift. The high level of redshift completeness allows us for the first time to constrain the GRB luminosity function and its evolution with cosmic times in a unbiased way. We find that strong evolution in luminosity (d_l=2.3\pm 0.6) or in density (d_d=1.7\pm 0.5) is required in order to account for the observations. The derived redshift distribution in the two scenarios are consistent with each other, in spite of their different intrinsic redshift distribution. This calls for other indicators to distinguish among different evolution models. Complete samples are at the base of any population studies. In future works we will use this unique sample of Swift bright GRBs to study the properties of the population of long GRBs.Comment: 7 pages, 3 figures, 2 tables; ApJ in pres

    The afterglow and host galaxy of GRB 090205: evidence for a Ly-alpha emitter at z=4.65

    Get PDF
    Gamma-ray bursts have been proved to be detectable up to distances much larger than any other astrophysical object, providing the most effective way, complementary to ordinary surveys, to study the high redshift universe. To this end, we present here the results of an observational campaign devoted to the study of the high-z GRB 090205. We carried out optical/NIR spectroscopy and imaging of GRB 090205 with the ESO-VLT starting from hours after the event up to several days later to detect the host galaxy. We compared the results obtained from our optical/NIR observations with the available Swift high-energy data of this burst. Our observational campaign led to the detection of the optical afterglow and host galaxy of GRB 090205 and to the first measure of its redshift, z=4.65. Similar to other, recent high-z GRBs, GRB 090205 has a short duration in the rest-frame with T_{90,rf}=1.6 s, which suggests the possibility that it might belong to the short GRBs class. The X-ray afterglow of GRB 090205 shows a complex and interesting behaviour with a possible rebrightening at 500-1000s from the trigger time and late flaring activity. Photometric observations of the GRB 090205 host galaxy argue in favor of a starburst galaxy with a stellar population younger than ~ 150 Myr. Moreover, the metallicity of Z > 0.27 Z_Sun derived from the GRB afterglow spectrum is among the highest derived from GRB afterglow measurement at high-z, suggesting that the burst occurred in a rather enriched envirorment. Finally, a detailed analysis of the afterglow spectrum shows the existence of a line corresponding to Lyman-alpha emission at the redshift of the burst. GRB 090205 is thus hosted in a typical Lyman-alpha emitter (LAE) at z=4.65. This makes the GRB 090205 host the farthest GRB host galaxy, spectroscopically confirmed, detected to date.Comment: Accepted for publication in Astronomy and Astrophysics; 8 pages, 7 figure

    Long-range attraction between particles in dusty plasma and partial surface tension of dusty phase boundary

    Full text link
    Effective potential of a charged dusty particle moving in homogeneous plasma has a negative part that provides attraction between similarly charged dusty particles. A depth of this potential well is great enough to ensure both stability of crystal structure of dusty plasma and sizable value of surface tension of a boundary surface of dusty region. The latter depends on the orientation of the surface relative to the counter-ion flow, namely, it is maximal and positive for the surface normal to the flow and minimal and negative for the surface along the flow. For the most cases of dusty plasma in a gas discharge, a value of the first of them is more than sufficient to ensure stability of lenticular dusty phase void oriented across the counter-ion flow.Comment: LATEX, REVTEX4, 7 pages, 6 figure
    • …
    corecore