46 research outputs found
Interplay Between Risk Perception, Behavior, and COVID-19 Spread
Pharmaceutical and non-pharmaceutical interventions (NPIs) have been crucial for controlling COVID-19. They are complemented by voluntary health-protective behavior, building a complex interplay between risk perception, behavior, and disease spread. We studied how voluntary health-protective behavior and vaccination willingness impact the long-term dynamics. We analyzed how different levels of mandatory NPIs determine how individuals use their leeway for voluntary actions. If mandatory NPIs are too weak, COVID-19 incidence will surge, implying high morbidity and mortality before individuals react; if they are too strong, one expects a rebound wave once restrictions are lifted, challenging the transition to endemicity. Conversely, moderate mandatory NPIs give individuals time and room to adapt their level of caution, mitigating disease spread effectively. When complemented with high vaccination rates, this also offers a robust way to limit the impacts of the Omicron variant of concern. Altogether, our work highlights the importance of appropriate mandatory NPIs to maximise the impact of individual voluntary actions in pandemic control
Bremsstrahlung in intermediate-energy nucleon reactions within an effective one-boson exchange model
Within a covariant effective one-boson exchange model for the matrix of
interactions we present detailed calculations of bremsstrahlung cross
sections for proton - proton and proton - neutron reactions at beam energies in
the 1 GeV region. Besides pure bremsstrahlung processes we consider photons
from decays and contributions from the
process. At beam energies above 700 MeV the decay channel dominates
the spectra at large photon energies, where the interference between
non-resonance processes and the decay channel becomes also important.
Low energy photons stem from pure bremsstrahlung processes. The available
experimental data at 730 MeV beam energy is well described. We extrapolate the
model down to 280 MeV, where more detailed experimental data exist, and find
agreement with angular distributions.Comment: 20 pages with 10 figures, to be published in Nucl. Phys.
Recommended from our members
Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics
Ultrafast infrared nano-imaging has demonstrated access to ultrafast carrier dynamics on the nanoscale in semiconductor, correlated-electron, or polaritonic materials. However, mostly limited to short-lived transient states, the contrast obtained has remained insufficient to probe important long-lived excitations, which arise from many-body interactions induced by strong perturbation among carriers, lattice phonons, or molecular vibrations. Here, we demonstrate ultrafast infrared nano-imaging based on excitation modulation and sideband detection to characterize electron and vibration dynamics with nano- to micro-second lifetimes. As an exemplary application to quantum materials, in phase-resolved ultrafast nano-imaging of the photoinduced insulator-to-metal transition in vanadium dioxide, a distinct transient nano-domain behavior is quantified. In another application to lead halide perovskites, transient vibrational nano-FTIR spatially resolves the excited-state polaron-cation coupling underlying the photovoltaic response. These examples show how heterodyne pump-probe nano-spectroscopy with low-repetition excitation extends ultrafast infrared nano-imaging to probe elementary processes in quantum and molecular materials in space and time.
</p
A versatile method for simulating pp -> ppe+e- and dp -> pne+e-p_spec reactions
We have developed a versatile software package for the simulation of
di-electron production in and collisions at SIS energies. Particular
attention has been paid to incorporate different descriptions of the Dalitz
decay via a common interface. In addition, suitable
parameterizations for the virtual bremsstrahlung process
based on one-boson exchange models have been implemented. Such simulation tools
with high flexibility of the framework are important for the interpretation of
the di-electron data taken with the HADES spectrometer and the design of
forthcoming experiments
Field transformations and simple models illustrating the impossibility of measuring off-shell effects
In the context of simple models illustrating field transformations in
Lagrangian field theories we discuss the impossibility of measuring off-shell
effects in nucleon-nucleon bremsstrahlung, Compton scattering, and related
processes. To that end we introduce a simple phenomenological Lagrangian
describing nucleon-nucleon bremsstrahlung and perform an appropriate change of
variables leading to different off-shell behavior in the nucleon-nucleon
amplitude as well as the photon-nucleon vertex. As a result we obtain a class
of equivalent Lagrangians, generating identical S-matrix elements, of which the
original Lagrangian is but one representative. We make use of this property in
order to show that what appears as an off-shell effect in an S-matrix element
for one Lagrangian may originate in a contact term from an equivalent
Lagrangian. By explicit calculation we demonstrate for the case of
nucleon-nucleon bremsstrahlung as well as nucleon Compton scattering the
equivalence of observables from which we conclude that off-shell effects cannot
in any unambiguous way be extracted from an S-matrix element. Finally, we also
discuss some implications of introducing off-shell effects on a
phenomenological basis, resulting from the requirement that the description of
one process be consistent with that of other processes described by the same
Lagrangian.Comment: 19 pages, Latex, using RevTe
Consistent off-shell vertex and nucleon self-energy
We present a consistent calculation of half-off-shell form factors in the
pion-nucleon vertex and the nucleon self-energy. Numerical results are
presented. Near the on-shell point the pion-nucleon vertex is dominated by the
pseudovector coupling, while at large nucleon invariant masses we find a
sizable pseudoscalar admixture.Comment: 23 pages, 7 figures, REVTeX, submitted to Phys. Rev. C, replaced with
corrected versio
Di-Electron Bremsstrahlung in Intermediate-Energy pn and Dp Collisions
Invariant mass spectra of di-electrons stemming from bremsstrahlung processes
are calculated in a covariant diagrammatical approach for the exclusive
reaction D p \to p_{\rm sp} n p e^+ e^- with detection of a forward spectator
proton, p_{sp}. We employ an effective nucleon-meson theory for parameterizing
the sub-reaction n p \to n p e^+ e^- and, within the Bethe-Salpeter formalism,
derive a factorization of the cross section in the form {d\sigma_{D p \to
p_{\rm sp} n p e^+ e^-}}/{dM}= {d\sigma_{n p \to n p e^+ e^-}}/{dM} \times
kinematical factor related solely to the deuteron (M is the e^+ e^- invariant
mass). The effective nucleon-meson interactions, including the exchange mesons
\pi, \sigma, \omega and \rho as well as excitation and radiative decay of
\Delta(1232), have been adjusted to the process pp \to pp e^+ e^- at energies
below the vector meson production threshold. At higher energies, contributions
from \omega and \rho meson excitations are analyzed in both, NN and Dp
collisions. A relation to two-step models is discussed. Subthreshold
di-electron production in Dp collisions at low spectator momenta is
investigated as well. Calculations have been performed for kinematical
conditions envisaged for forthcoming experiments at HADES
Interplay Between Risk Perception, Behavior, and COVID-19 Spread
Pharmaceutical and non-pharmaceutical interventions (NPIs) have been crucial for controlling COVID-19. They are complemented by voluntary health-protective behavior, building a complex interplay between risk perception, behavior, and disease spread. We studied how voluntary health-protective behavior and vaccination willingness impact the long-term dynamics. We analyzed how different levels of mandatory NPIs determine how individuals use their leeway for voluntary actions. If mandatory NPIs are too weak, COVID-19 incidence will surge, implying high morbidity and mortality before individuals react; if they are too strong, one expects a rebound wave once restrictions are lifted, challenging the transition to endemicity. Conversely, moderate mandatory NPIs give individuals time and room to adapt their level of caution, mitigating disease spread effectively. When complemented with high vaccination rates, this also offers a robust way to limit the impacts of the Omicron variant of concern. Altogether, our work highlights the importance of appropriate mandatory NPIs to maximise the impact of individual voluntary actions in pandemic control.BMBF, 01KX2021, Nationales Forschungsnetzwerk der Universitätsmedizin zu Covid-19EC/H2020/101003480/EU/COVID-19-Outbreak Response combining E-health, Serolomics, Modelling, Artificial Intelligence and Implementation Research/CORESM
Investigation on the Behavior of Austenite and Ferrite Phases at Stagnation Region in the Turning of Duplex Stainless Steel Alloys
This paper investigates the deformation mechanisms and plastic behavior of austenite and ferrite phases in duplex stainless steel alloys 2205 and 2507 under chip formation from a machine turning operation. SEM images and EBSD phase mapping of frozen chip root samples detected a build-up of ferrite bands in the stagnation region, and between 65 and 85 pct, more ferrite was identified in the stagnation region compared to austenite. SEM images detected micro-cracks developing in the ferrite phase, indicating ferritic build-up in the stagnation region as a potential triggering mechanism to the formation of built-up edge, as transgranular micro-cracks found in the stagnation region are similar to micro-cracks initiating built-up edge formation. Higher plasticity of austenite due to softening under high strain is seen responsible for the ferrite build-up. Flow lines indicate that austenite is plastically deforming at a greater rate into the chip, while ferrite shows to partition most of the strain during deformation. The loss of annealing twins and activation of multiple slip planes triggered at high strain may explain the highly plastic behavior shown by austenite
A new MRI rating scale for progressive supranuclear palsy and multiple system atrophy: validity and reliability
AIM
To evaluate a standardised MRI acquisition protocol and a new image rating scale for disease severity in patients with progressive supranuclear palsy (PSP) and multiple systems atrophy (MSA) in a large multicentre study.
METHODS
The MRI protocol consisted of two-dimensional sagittal and axial T1, axial PD, and axial and coronal T2 weighted acquisitions. The 32 item ordinal scale evaluated abnormalities within the basal ganglia and posterior fossa, blind to diagnosis. Among 760 patients in the study population (PSP = 362, MSA = 398), 627 had per protocol images (PSP = 297, MSA = 330). Intra-rater (n = 60) and inter-rater (n = 555) reliability were assessed through Cohen's statistic, and scale structure through principal component analysis (PCA) (n = 441). Internal consistency and reliability were checked. Discriminant and predictive validity of extracted factors and total scores were tested for disease severity as per clinical diagnosis.
RESULTS
Intra-rater and inter-rater reliability were acceptable for 25 (78%) of the items scored (≥ 0.41). PCA revealed four meaningful clusters of covarying parameters (factor (F) F1: brainstem and cerebellum; F2: midbrain; F3: putamen; F4: other basal ganglia) with good to excellent internal consistency (Cronbach α 0.75-0.93) and moderate to excellent reliability (intraclass coefficient: F1: 0.92; F2: 0.79; F3: 0.71; F4: 0.49). The total score significantly discriminated for disease severity or diagnosis; factorial scores differentially discriminated for disease severity according to diagnosis (PSP: F1-F2; MSA: F2-F3). The total score was significantly related to survival in PSP (p<0.0007) or MSA (p<0.0005), indicating good predictive validity.
CONCLUSIONS
The scale is suitable for use in the context of multicentre studies and can reliably and consistently measure MRI abnormalities in PSP and MSA. Clinical Trial Registration Number The study protocol was filed in the open clinical trial registry (http://www.clinicaltrials.gov) with ID No NCT00211224