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Abstract. We have developed a versatile software package for the simulation of di-electron production in
pp and dp collisions at moderate beam kinetic energies (1-2 GeV). Particular attention has been paid to
incorporate different descriptions of the Dalitz decay A — NeTe™ via a common interface. In addition,
suitable parameterizations for the virtual bremsstrahlung process NN — NNete™ based on one-boson
exchange models have been implemented. Such simulation tools with high flexibility of the framework
are important for the interpretation of the di-electron data taken with the HADES spectrometer and
demonstrates the wide applicability within the field of nuclear and hadronic physics.

1 Introduction

Experiments with the High-Acceptance Di-Electron Spec-
trometer (HADES) [1] are aimed at searching for medium
modifications of hadrons at high density and moder-
ate temperatures created in heavy-ion collisions in the
1-2 AGeV impact beam energy range. There exist a multi-
tude of predictions, partially conflicting in details, await-
ing verification or falsification [2-7]. Due to negligible
final-state interactions with nuclear matter, di-electrons
or di-muons are considered to be useful penetrating probes
for this purpose.

While at higher energies various experimental set-ups
for di-lepton measurements have been or are operating,
e.g., HELIOS-3, CERES/NA35, NA38, NA50, NA60 (the
latter three for di-muons), and PHENIX, HADES is the
only presently active installation at lower energies (i.e.,
currenty at SIS-18 at 1-2 AGeV, and in future at the FAIR
facility up to 8 AGeV [8]). In addition, it can cover elemen-
tary hadron reactions (pp, mp, and via tagging a specta-
tor, also pn) and hadron-nucleus (pA, wA) collisions. This
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large range of reactions is related to the capabilities of the
Schwerlonen-Synchrotron SIS18 at GSI, Darmstadt.

When searching for medium modifications of hadrons
in the di-electron channel, it is important to have a reli-
able experimental reference, in particular from elementary
hadronic reactions. This became clearly evident in view of
the unexplained pair excess measured by the DLS and,
more recently, HADES experiments [9,10]. In addition,
the knowledge of the elementary process NN — NNete™
is a prerequisite to understand possible in-medium effects
in heavy-ion dilepton data [7,11]. In this context, HADES
has performed two di-electron experiments using a liquid-
hydrogen target and proton/deuteron beams [12,13]: pp
at 1.25 GeV and dp at 1.25 AGeV, i.e., at the same beam
kinetic energy per nucleon, which access a broad range
of topics. For example, the branching ratio and involved
electromagnetic transition form factors of the A Dalitz
decay (A — N~* — Nete ) are unmeasured. In par-
ticular, the di-electron production in the NN collision
is regarded to be sensitive to the nucleon form factor in
the time-like region [14-16]. Moreover, the cross-section of
non-resonant virtual photon emission (often referred to as
“bremsstrahlung”) differs by up to a factor 4 in the most
recent calculations [17-20].

On the other hand, the different contributions of short-
lived sources are not easy to separate, as, in principle,
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they have to be treated in a coherent approach, which
is done usually in quantum-mechanical calculations in-
cluding the interferences, using, e.g., One-Boson Exchange
(OBE) models. Such calculations for the process NN —
NNeTe™ have already been done in [21,22] and more re-
cently in refs. [17-20].

Our goal is to present the calculation methods and
their applicability to the HADES pp/pn data in order to
have a simulation tool at our disposal to be sensitive to
additional sources going beyond the A Dalitz decay con-
tribution. Due to restricted phase space coverage and effi-
ciency, a flexible simulation tool, which is capable to make
direct comparison of model predictions with data is par-
ticularly useful in this respect. Here we describe an ex-
tended version of the event generator Pluto [23] which is
the standard simulation tool for the HADES experiments,
and part of the FATRROOT utility tools. In addition, it is
frequently used by the experiments installed at the COSY
ring, like WASA-at-COSY and ANKE.

The calculations mentioned above ensure a coherent
treatment of the NN — NNete™ reaction, including
graphs involving nucleons, A’s or higher resonances and
fulfill gauge invariance. As the graph involving the A
Dalitz decay process is expected to be dominant in the pp
reaction and still important in the pn reaction, a separate
treatment of this contribution is useful. Therefore, one has
to consider two mechanisms for simulations: either a full
calculation including properly the interference effects, or
the production via resonances (e.g. the A(1232)) and their
subsequent decay, the so-called A Dalitz decay model.

Following these aims a versatile simulation framework
has to be able to

1. convert parameterized (or calculated) differential
cross-sections of the NN — NNete™ reaction into
“exclusive” events and, alternatively,

2. produce di-electrons via resonances (NN — AN —
NNete™) using mass-dependent branching ratios and
angular distributions.

For each of these two methods different descriptions
should be compared. These new developments are use-
ful wherever simulations of this kind (in NN as well as in
future 7N experiments) have to be done in the context of
the interpretation of HADES data.

The main goal of this report is to describe a stan-
dardized method to incorporate theoretical calculations
for NN — NNe'e™ reactions wherever available and sub-
sequently to compare them to experimental data using an
open-source and adaptable package, and to demonstrate
how simulations of the dp/pp reaction may be performed
to provide a valuable tool for interpreting the HADES
data [13]. Our paper is organized as follows. In sect. 2, we
outline the numerical implementation, the software frame-
work and how the simulation of both types of reactions has
been done. The simulation results are discussed in sect. 3.
Our summary can be found in sect. 4. In appendix A,
we explain the models included to describe the A Dalitz
decay and the used form factors.
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2 Numerical realization
2.1 Pluto framework

The simulations which are presented here have been elab-
orated within the context of the Pluto framework [23]
originally intended to be used for experiment proposals.
The Pluto package is entirely based on ROOT [24] and
steers the event production with very little overhead by
using so-called “macros” which are —within the ROOT
framework— based on the C++ language.

After the set-up procedure, N, events with the mo-
menta of all involved particles (and masses in the case of
unstable ones) are created (“event loop”). Subsequently,
each event is usually filtered with the detector acceptance
or fed into a full digitization package like Geant [25] (not
part of our package). The pp (or pn) system enters —in our
case— as a “seed object” into the decay chain with a given
center-of-momentum (c.m.) total energy and momentum.
Cocktails —which are the incoherent sum of different re-
action channels— can be generated as well.

Recently, the Pluto package was re-designed in order
to introduce a more modular, object-oriented structure,
thereby making additions such as new particles, new de-
cays of resonances and new algorithms up to modules for
entire changes (plug-ins) easily applicable [26].

2.2 The A mass shape

The standard method of event-based simulations which is
usually employed by Pluto as well is to set up a reaction
of consecutive decays, like pp — pAT — ppy*, — ppete™.
Hence, this means that the A mass shape (and mass-
dependent branching ratios) must be known prior to event
sampling.

How does one usually generate N, events for the
Dalitz decay A — N~ 7 In the first step, the A mass
shape is sampled, i.e., for each event i, a mass m(Az) is
assigned.

Following the usual ansatz (see, e.g., [27]) we use the
relativistic form of the Breit Wigner distribution:

mA I (ma)
(05— + (Do)

A

9= (ma) = A (1)
where ma denotes the actual energy (resonance mass),
and M, is the static pole mass of the resonance. The
mass-dependent width is the sum of the partial widths

N
I'**Y(ma) = ka(mA) (2)
%

with N the number of decay modes. The factor A is
chosen such that the integral is statistically normalized,
[dmag?(ma) = 1, i.e., eq. (2) leads to the following
condition for the mass-dependent branching ratio for each
decay mode k:

I'*(ma)

bk(mA) = m : (3)
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The width for the dominating hadronic decays A —
N is derived from a well-known ansatz [27-29]:

(o) o

FA*)NT{'(m

with I'*~N7 being the partial decay width.

The dependence on the two decay products with
masses my and m, enters via the terms ¢™(ma) and
q"(MA), namely the momentum of one out of the two
decay products in the rest frame of the parent resonance.
We follow refs. [27,29] which uses for the resonance the
cutoff parameterization

/62
Hma) = )P 8
with the parameter § = 300 MeV.

To simulate the Dalitz decay, the mass-dependent
branching ratio has to be taken into account as

A—Nete™
9= (ma

) = b2V (mp)gA (ma). (6)

Thus, the partial decay width

A—NeTe™
drAs

dmeee

(7)

has to be used in the numerator of eq. (1) which is calcu-
lated by numerically integrating eq. (7) for each m mass
bin, respectively.

The differential A Dalitz decay width dI'/dm.. de-
pends on three transition form factors, as explained in
more detail in the appendix. In particular, we compare
the effect of using constant form factors, with same val-
ues as for a real photon emission (constant magnetic form
factors) with a two-component model from Iachello and
Wan [30-32] which is in line with the vector-meson domi-
nance (VMD) model. This leads to different mass shapes
gA=Ne"e” (1 1) exhibited in fig. 1.

One can see that the mass-dependent branching ra-
tio decreases with mass. This feature is an important is-
sue for the di-electron production as large contributions
of the higher-mass tail of the A-resonance and the mass
dependence in the A Dalitz branching ratios affect not
only the di-electron invariant-mass spectral shape but also
the di-electron yield, compared to the hadronic channels.
Therefore, the mass-dependent branching ratio must be
considered even if the effect might be suppressed in part
by the limited phase space.

How can an event generator take that behavior into
account for the mass sampling? This is done in our exten-
sion by using the weighting method which is explained in
the next subsections.

FAHN@‘*’@‘ (mA) _ /dmee

2.3 Weight-based method

The first step done towards our extension is to bring the
spectrum (represented by a histogram) onto an absolute

403

—_~~ E T ‘ E
< F ~ 7

r Voo ]

é 1 j/ N =
3 E N 3
o F S E
10" == =
10_23 N A—Nr i

N

10°F I A—>Ny 3

F _ 3

C Mt b

104 | ""1':"'::-"::':':1';'1'3':1';:',',,i;

g | A—Ne'e ]

10°E | .
10'6; I *
|/ E

-7 o b b by by

10792 2

2

m, [GeV/c]

Fig. 1. Total mass distribution gA as a function of ma of
A(1232) (solid line) compared to the distribution functions
of dedicated decay channels. Long-dashed line: A(1232) —
N from (4) and dash-dotted line: A(1232) — N+. Dashed
line: A(1232) — Ne'te™ from (6) using ref. [33] with con-
stant magnetic form factor. In addition, the effect of the two-
component quark-model transition form factor of refs. [30-32]
for A(1232) — Ne'e™ is indicated by the short-dashed line.

scale such that one can assign each of its bins to a differ-
ential cross-section. Therefore, total cross-section models
for elementary NN collisions have been implemented.

For the reactions discussed here, two major contri-
butions (beside the bremsstrahlung) have been added,
which are the A production [27] (we assume 0p, ., a+ =
30pp—ppro) and the close-to-threshold 7 production [34-
36] (the latter one is needed for the pn case). In order
to obtain these cross-sections independently of the num-
ber of events, first a default weight of 1/N,, is applied
to the NN seed object. In the decay algorithms, where
mass and momentum sampling takes place, the weights
of all attached distributions are multiplied with the de-
fault weight of the parent particle to an event weight W;.
In particular, parameterizations for the total cross-section
can be included. This leads —in a 1-step decay as defined
above— to the simple relation

1
NCV

Nev Nev
0_NN—>XZ _ E Wi — § WNN—>XZ, (8)
A %

where X is an unstable particle (e.g., 7°, ) and Z stands
for the remaining particles. Equation (8) is the basic def-
inition to be used in all weighted Pluto simulations: the
integral (sum) of the resulting histogram weights repre-
sents the total (or partial) cross-section of an exclusive
reaction. Therefore, the simulated spectra can be com-
pared directly to the normalized experimental data. If we
now extend this definition to a two-step process, where a
decay X — yz follows, the weight of particle X has to be
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folded with the mass-dependent weight of the consecutive
decay model, which will be described in sect. 2.6.

In the simplest case we can consider that production
and decay of X are independent, which is the case for
the n as well as for the 7° as they have a comparably
small width. In particular, by using a sampling model (re-
turning a random event from the known distributions and
momenta of y, z) this weight is the static branching ratio

WX=v2 = pX—=¥2 yielding

N,
1 ev
NN—yzZ _ WNN—‘XZbX—’yZ. 9
’ Nov Z )

2.4 Uniformly distributed di-electron generator

Very often experiments are concerned with regions of the
phase space, where a small number of events is expected
compared to the overall number of a given process. This
is clearly the case for the electromagnetic Dalitz decays,
where the di-lepton yield spans many orders of magni-
tude with a high differential cross-section for the low-
mass pairs, whereas the high-mass pairs have a much
lower cross-section do/dme.. Obviously, a large number
of events have to be sampled before an acceptable num-
ber in the high-mass region has been collected. On the
other hand, the Monte Carlo simulations presented here
need an adequate statistics for the high-mass region of
interest.

The solution used in the extension of Pluto and the
simulation discussed in the following is that sampling is
done using a uniformly distributed di-lepton distribution
first. Then, a weight is calculated using the same physics
decay model, which was employed for the sampling in

sect. 2.2. This means, the decay weight W;* ~Y* changes
(4)

from event to event, depending on the values m; = me¢ .
By extending eq. (9) we get for the Dalitz decays of
the pseudoscalar mesons

N,

NN—NNete=y _ 1 =~ NN—NN (n,7°)
g 7= Niev ; W n
X S ) @) (10)

with W("“O)Hﬁe—”’(mee) as the differential cross-section
from [37]. The normalization factor

g ) —et (11)

ey _ pna®)—etey (W)
is used to normalize the spectrum to the selected branch-
ing ratio and thereby correct for the fact that more events
are created in the phase space region with small proba-
bility, where the model weight is small compared to the
region usually containing a large number of events. Here,
the average decay weight

N,
W) —erer — NL St

ev =1

e
)

(12)

Ng, = Nev + Npre (13)
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is first calculated for a selected number of events (Npre =
1000 turned out to be sufficient to avoid artefacts) and
then adjusted within the running event loop.

For broad resonances, as discussed in sect. 2.2, the
branching ratio should be an outcome, and no precondi-
tion of the calculation. The same argument can be brought
forward for the calculations from refs. [17,19,20]. Inte-
grating these distributions is difficult since the underlying
calculations are only presented for invariant di-electron
masses larger then 50-100 MeV /c? [17,19,20]. Thus, the
partial cross-section cannot be calculated correctly and
added to the data base; at least it would require some ex-
trapolation. However, this can be avoided, as shown in the
following.

2.5 Models returning do/dm

As an application for a simulation without an explicit re-
normalization to a fixed branching ratio or total cross-
section, the above-mentioned weighting has been exploited
because the calculations from refs. [17,19,20] provide the
differential cross-section do/dme. already done on an ab-
solute scale. Aiming for a comparison of the A Dalitz
decay with the resonant NA terms (method 1), we de-

fine as a model weight WNA(mge)) = do/dme. param-
eterized as described below. It is evident that the same
method can be used for the full (coherent) differential
cross-section and the quasi-elastic term as well, just by
replacing WN4 (m(e?) in the generator by qu“(méi)) and
Wwela (mé@ ), respectively.

In such a case it is more convenient to use the func-
tion do/dm.. directly with the uniformly distributed di-
electron distribution generator, as in the previous exam-
ple, but without the intermediate step of production and
decay. As the event loop generates a row of N, values
m; = mé? the cross-section is represented naturally by
the Monte Carlo integration method as

UppN—A>ppe+e* _ / ddO' dmee ~
Mee
1 Nev
Ni Z WNA (m((fe))Amee, (14)
V=1

where Am,, is the kinematic range of the di-electron gen-
erator (changing also event by event) which is provided
by the model. It is an advantage that the normalization
factor S is not needed.

The function W4 required here has been obtained
by digitizing the curves provided by ref. [17] and using a
parameterization of the form
do Ps

dmee

( )7 (mmax - mee)
" Pyexp(Pymee + Pym?2,)
(15)

WNA (mee)

with

(mn1 4+ mp2)
(16)

Mamax =V (M2 + my1)2+2myoTiin —
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as the kinematic limit with N1 as the beam nucleon. The
parameters P; fitted to the curves in ref. [17] are polynomi-
als P;(Txin) = a +a} Tiin + a1, . The function do/dme.
of refs. [19,20] was directly supplied by [38] for a fixed
kinetic beam energy of Ty, = 1.25 GeV, and moreover of
Tiin = 1 GeV and Ty, = 1.5 GeV for the pn case.

2.6 Models returning dI'/dm

Let us continue with an alternative (method 2), where the
A production is followed by the Dalitz decay. Pluto treats
this process in two steps, leaving out the last and uncrit-
ical decay 7/, — ete™. The weight WA=N7ee (ma, mee)
is now a function of two masses. Taking eqs. (3), (7) the
mass-dependent branching ratio is obtained by

FnALZNEJre (mee) 1
T (my)
(17)
Similar to eq. (14), the di-electron generator represents
the Monte Carlo integration method of the model

bA_>N6+67 :/d ee
(mA) " dmee

— te—
dF'yﬁA NeTe (mee)

WAHN’Y:e (mA7 mee) = dm
ee

(18)

Therefore the mass-dependent branching ratio obtained
as

bA—>N6+€7 (mA) ~

(19)
is already considered, which means that the A mass shape
has to be sampled in the first step with the pure function
g?(m) without using condition (6). This is ensured by
the Pluto framework automatically. The effect of the mass
dependence, as discussed in sect. 2.2, becomes now visible:
The fraction of the di-electron events, compared to the
hadronic channels,

UNN_>NA_>NNe+e*

b(Tiin) = (20)

oNN—=NA ’
is in our case with b(Tii, = 1.25GeV) = 4.96 - 107 sig-
nificantly larger than the static branching ratio, which is
bA—Nee — 4191077 (see sect. A.2.1). This means that
the mass-dependent branching ratio is an important fea-
ture which cannot be neglected.

3 Simulation
3.1 A production

From the experimental point of view the consideration of
known angular distributions is crucial. This is in particular
true for the emission of the A-resonance in the c.m. frame
which affects the direction of both protons. The impact on
the experimentally measured data comes due to the fact
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that the detection of the proton could be a trigger require-
ment or, explicitly, enters the analysis of a (semi-)exclusive
channel, e.g. pp — XpeTe™. Such effects are often inte-
grated out in calculations.

In the case of the A production, we follow the one-pion
exchange model of ref. [39], which is in excellent agreement
with the data and in detail described in ref. [23]. This adds
a strong forward-backward peaking of the polar angle of
the nucleons with respect to the beam axis, an effect which
is considered in the two-step Dalitz decay simulations. In
the OBE simulations virtual photons are generated with
the differential cross-sections taken from the coherent cal-
culation like a hypothetical “on-mass” shell particle with
a given mass m... Due to missing information the momen-
tum and energy is sampled assuming a three-body phase
space decay of the NN seed object sitting at rest in the
center of mass with m = my,. Consequently, the virtual
photons are emitted isotropically in the OBE, but not in
the A simulation.

3.2 Different descriptions of the A Dalitz decay

After having all needed pieces at our disposal the differ-
ence between the OBE calculations [17,19,20] and the cal-
culations from [33] (either with the photon point form
factors or the two-component quark model option) can be
studied in a quantitative way. Figure 2 shows the Pluto
simulation for the processes pp — pAt — ppete™ (left)
and pn — NATY — pnete™ (right) for the two descrip-
tions mentioned above together with the resonant term

Np X4 Npete~ from the OBE calculation [17]. The two
OBE calculations use the same N-A transition form fac-
tors, but the latter are different than the constant form
factors used in the two-step Dalitz decay model. As seen
in fig. 2 the effect on the di-electron spectrum is, however,
expected to be lower than 15%.

It is obvious that the disagreement is much larger. The
OBE calculation of ref. [17] is larger by a factor of 2-4 than
the production via a “free” A using the mass-dependent
branching ratio. The latter method is a crude approach,
taking into account only one graph neglecting interfer-
ences and anti-symmetrization effects. It is, however, fre-
quently used in transport code calculations.

The calculation using the two-componant quark model
from refs. [30-32,40] comes closer to the OBE model, but
undershoots it at low masses as well. Surprisingly, we do
not come to the same conclusion as refs. [19,20], where
the spectrum of the two-step Dalitz decay model has a
very steep slope. Qualitatively, our model is much closer
to the OBE calculations of refs. [17,19,20] and, taking the
VMD form factor into account, lies almost on top of the
curves from refs. [19,20]. This clearly needs experimental
confirmation and further theoretical studies.

3.3 Final-state interaction

In all near-threshold reactions, the final-state interactions
(FSI) may influence strongly both the total cross-section
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Fig. 2. (Color online) Resonant di-electron production in Np N4 NpeTe™ reactions at Tiin = 1.25GeV. Left: pp reaction,
Right: np reaction. The solid black curve and short-dashed (green) curves are the result of the full Pluto simulation using the
mass-dependent A width, its production cross-section and the dI'(ma)/dme. description from [33] with constant transition
form factors (labeled with “const.”), the short-dashed (green) curve was obtained with the two-component form factor [30-32]
(labeled with “2-comp.”) in addition. The long-dashed (blue) curve is the calculation from [17], whereas the (red) dot-dashed

curve is based on ref. [19,20] and provided by ref. [38].

as well as the population of the phase space. The first effect
is already included in the Delta Dalitz two-step simulation
as they use measured data. For the OBE calculations the
factorization [41,42]

Wﬁnal _ Wfsi % WNA,full,ela (21)
has been implemented. This is controlled via a switch
which means a factor W' is attached exploiting the in-
verse of the Jost function

fsi 1 2_ k+ia\”
v~ () = (i) 32
with
a,ﬁ:1<~/1—2r0i1>, (23)
To aop

and k as the relative momentum of the two nucleons using
the effective radii and scattering lengths ag = —7.81fm
and rg = 2.77fm for the pp case, and ag = —23.77 fm and
ro = 2.75fm for the pn case [42]. We use this description
to be compatible with the calculation done in [17]; other
functions could be implemented as well. Variations of ag
and 79 by 10% could apply changes of 3% for the lower
di-electron masses and 10% for the large masses at the
kinematical limit.

3.4 Nucleon momentum distribution in the deuteron

For the dp reaction, the nucleon momentum distribution
in the deuteron has to be taken into account, because the
effective neutron momentum may have a big impact at
larger di-electron masses [18]. This is done by Pluto in a

two-step process. In the first step, the off-shell mass of the
participant

2 _ 2 2 2 2
mpart =Mmy + mp - de \/ mp + PDeut

is determined by the parameterized wave function ppeut
from ref. [43]. Other parameterizations [44,45] have been
checked, but the differences on the di-electron spectrum
are negligible. Along with the second reaction particle (in
our case the target p at rest) this off-shell particle forms
the pn composite with a total c.m. energy my, of the
quasi-free reaction. In a second step the bremsstrahlung
model calculates the energy

(24)

2 2
M, — My, —

2
L m;,, — 2mpmy,
kin — om
n

(25)

of the proton in the neutron rest frame. Here, we use the
invariant mass my, to get the total cross-section o(myy,)
using the on-shell neutron mass m,,, which is also the ap-
proach in ref. [46]. It is important to note that, as the the
di-electron cross-section for the pn reaction was param-
eterized as a function of the kinetic proton energy, the
actual Ty, reflects the proton quasi-kinetic energy even
in the case of a deuteron beam and a proton target.

The consequence of the above-mentioned momentum
distribution is that the dp reaction results in a “smeared”
pn reaction c.m. energy and enables thus sub-threshold 7
production [34-36]. The formation of pn composites below
any threshold of the final state (as e.g. for the pn — pnn
threshold) is rejected while counting the number of re-
jected events to keep the proper normalization.

Figure 3 shows the different channels which are com-
bined later on in the final di-electron cocktails.
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Fig. 3. (Color online) Differential cross-section as a function
of the invariant mass my, in the quasi-free pn reaction taking
into account the deuteron momentum distribution. Solid curve:
AT production, short-dashed (green) curve: pn — pnror®
(constant ¢ = 0.1mb assumed), long-dashed (blue) curve:

pn — pnn, dot-dashed (red) curve: pn — dn.

3.5 pn/pp ratio

In the following, the iso-spin dependence of the
bremsstrahlung is discussed. By using the same methods
for the OBE calculations for the resonant term, the quasi-
elastic term and the full calculation, respectively, and di-
viding the simulation results for pn and pp the iso-spin
dependence can be studied. Figure 4 shows this ratio for
the different contributions and the coherent sum, option-
ally including the momentum distribution of the deuteron.
The simulation indicates that the influence of the momen-
tum distribution for masses smaller than 0.4 GeV/c? is
negligible.

3.6 Cocktail simulation

In the context of the new HADES data, the simulation
has to be done with a full cocktail calculation. Here, all
channels contributing to di-electron production at a given
energy have to be included. The main source of the di-
electrons are the 7% Dalitz decays. The production of 7°
mesons is done within the A-resonance model assuming
that all 70s are created via A. The production of  mesons
is also included for the dp case.

Figure 5 shows the possible contributions for the di-
electron production, based on i) the model from refs. [17,
18], and ii) the A production and subsequent Dalitz de-
cay. The difference between these two approaches is clearly
visible. Moreover, the Dalitz decay is used with the form
factor model from Iachello and Wan [30-32].

After taking the acceptance of the detector into ac-
count, our simulation can be compared to data [13]. Here,
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Fig. 4. (Color online) Ratio of gP"7P"¢¢ /gPPTPPe¢ a5 a func-
tion of me. using the OBE calculation [17] with the reso-
nant NA term (dashed curves), the quasi-elastic term (dotted
curves) and the full calculation (solid curves), for a beam en-
ergy of 1.25GeV /u. The grey (red) curves are obtained with
the pure pn reaction, whereas the black curves include the mo-
mentum distribution of the deuteron.

one can see that the HADES data will be sensitive to
differences in the various descriptions. We would like to
stress that though our presented results were limited to
invariant-mass distributions other variables (i.e. emission
and decay angles or transverse momenta) can be easily
compared to experimental data.

4 Summary

In summary we have presented the details of an exten-
sion of the previous Pluto framework able to incorporate
important descriptions for the production of low-mass di-
electrons in elementary collisions such as pp and quasi-free
pn. Several models based on a free A Dalitz decay and
full quantum-mechanical calculations have been included
so far and are ready for the comparison with the upcom-
ing HADES data [13]. As the intermediate excitation of
A is important for the di-electron production, we have
described in detail the corresponding models.

We greatly appreciate fruitful discussion with F. Iachello about
the two-component model and thank him for the permission
to use his calculations in our event generator. Furthermore,
the authors would like to thank R. Shyam for the support of
a new set of calculations compatible to the HADES energies.
Interesting discussions with U. Mosel are greatly appreciated.
This work was supported by the Hessian LOEWE initiative
through the Helmholtz International Center for FAIR (HIC
for FAIR) and by the Helmholtz Alliance EMMI “Extremes of
Density and Temperature: Cosmic Matter in the Laboratory”,
and BMBF 06DR135.
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Appendix A. A Dalitz decay models

Appendix A.1. Differential decay width of the A
Dalitz decay

In this report, for computing the A(1232) Dalitz decay we
use the prescription of ref. [47]

-
drgoNete 20

(mee) _ A—N~*

(M = Mee)

(A.1)
with a = 1/137 as the fine-structure constant. The decay
process A — N~* consists in three independent ampli-
tudes, which can be calculated unambiguously from the
electromagnetic vertex. However, as stressed in [33], in-
consistent formula for the differential decay width of this
process can be found in the literature. We tackled the cal-
culation by ourselves, using the magnetic dipole, electric
quadrupole and Coulomb quadrupole covariants [48], and
could confirm the expression of [33], as repeated below:

dmee

* % 2
LN (mae) = (GATNY (mye))

a (ma+my)? 3
1a 3.2 Y+Yy-,
16 mym3y

2 2
— Mee;

Y+ = (mA + mN) (AZ)
where the index N refers to ttle produced nucleon, e is the
electron charge, and G4 7" (m,-) depends on the N-A

electromagnetic transition form factors as

(G2 (1) = [Garlomy)

(
2

+3|G%(mye)

m
2
2m%,

*

+ G%‘(m'y*)

)

where Gr(m+), Gg(my-), Go(my-) are the magnetic,
electric and Coulomb N-A transition form factors, respec-
tively, which will be discussed in the next section of the ap-
pendix. Note that eq. (A.2) implies a normalization of the
form factors as in [48], since isospin factors are included in
the numerical factors. We could also check the validity of
the expressions derived in [49], where the amplitudes are
calculated with a different, but equivalent set of covari-
ants, with corresponding form factors. We use eq. (A.2)
throughout.

Appendix A.2. Electromagnetic N-A transition form
factors

The electromagnetic N-A transition form factors are ana-
lytical functions of the squared four-momentum transfers
¢? at the N-A vertex. Pion electroproduction and photo
production experiments allow to determine these form fac-
tors in the space-like region (¢* < 0) [50]. In the A Dalitz
decay process, due to the positive four-momentum trans-
fer squared (¢> = m2. > 4m?,), the time-like region is
probed, where only the limit at ¢ = 0 is known experi-
mentally. An additional difficulty hails from the fact that
the form factors, which are real in the space-like region,
get an imaginary part in the time-like region.

Therefore, two options can be chosen to compensate
the lack of experimental information on these observables
and have been implemented for Pluto simulations.

Appendix A.2.1. Constant N-A transition form factors

In this option, which is based on the smallness of the
squared four-momentum transfer ¢2 in the A Dalitz decay
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process, the form factors are given the values Gj; = 3.0,
Gg =0, G¢ = 0. This choice is consistent with the precise
measurements of the electric and magnetic form factors
in pion photoproduction experiments [50] and with the
very small contribution of the Coulomb term in eq. (A.3)
and provides in addition the correct radiative decay width
IA=Nv" = 0.66 MeV. The resulting branching ratio at
the pole mass of b2~ Ne¢ = 419 . 10~° is remarkably
consistent to the photon decay branching ratio times the
fine-structure constant a which would result in b2~V =
4.01-107°.

Appendix A.2.2. Two-component quark model

The alternative is to use a model for the N-A transition
form factors. This model should in principle satisfy the an-
alyticity properties in the complex g2-plane, as well as the
asymptotic behavior predicted by QCD sum rules, while
reproducing the existing data measured in the space-like
region. At first, the photon-point value provides the nor-
malization of the whole function. As an example of such
models, the two-component quark model, described in the
following, has been implemented in the Pluto event gen-
erator.

The picture behind this transition form factor model is
the overlay of an intrinsic ¢® structure and a meson cloud
which couples to the virtual photon via vector mesons [51].
The model allows an analytical continuation of the func-
tion from a space-like to a time-like region [52], inducing
a phase, and could be successfully applied to the descrip-
tion of elastic space-like and time-like nucleon form factor
measurements. The formalism has been recently extended
to calculate also baryonic transition form factors in a uni-
fied way [30-32], these new developments have been tested
on the space-like N-A transition form factors measure-
ments. We use here the simplest version of the model,
which assumes isospin symmetry, and therefore considers
only the magnetic N-A transition form factor. The intrin-
sic 3-quark structure is described as:

1
2
= == A..4
g(q ) (1 _ a2619q2)2 ( )
and the overall expression for the time-like N-A transition
form factor is:

4 2mym
Gu(q?) = pp <3\/§) ”miim%g(‘f)

(8" + BF,(4*)),

where 1, = 2.793 is the proton magnetic moment and 3
and ' are the constants for the coupling to the quark
core and to the meson-cloud, respectively. In the case of
the N-A transition, only the p meson contributes to the
latter contribution, due to isospin conservation and the
corresponding ¢?-dependence is given by F,(¢?), as

(A.5)

mf, + 8 ,my/m
m2 —q? +4mg (1 — x),(a(x) —iy(x))
(A.6)

Fp(q2) =
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Fig. 6. Magnetic N-A transition form factor (GA~~7")2 in
the two-component quark model [30-32,40].

where we have introduced = = ¢%/4m2 and [40]

a(x):%\/x;lln(\/xflJr\/E)

ifx>1, (A7)
()= rz—1
= x
a(z)= 1_x[1—2C0t1 * } .
x T 11—z if z<1.(A.8)
(x)=0

In eq. (A.6), the values m, = 765MeV and I, =
112 MeV are used differently from the physical values due
to the form of parameterization. The value of the parame-
ters @ = 0.29 GeV~2, § = 53°, 8 = 1.2147 and 3’ = 0.004
results from fits of the model predictions to the available
experimental information as discussed above. The result-
ing distribution of form factor values (see fig. 6) shows a
broad peak centered around \/qi2 = Mee ~ 0.6mf2). Due to
the small value of the ' parameter, the contribution of
the coupling to the quark core in this model is negligible
up to ¢*> = 5(GeV/c)?, the dominant feature of the model
in the kinematic range probed by the Dalitz decay process
is therefore the vector dominance.

Figure 7  finally  shows  the  distribution
araonN ete” /dmee for the two form factor models.
The results clearly exhibit a rising decay width for larger
A masses. In a proton-proton collision at 1.25 GeV inci-
dent energy, the mass of the produced baryonic resonance
is limited to 1.48 GeV/c?, the latter effect will neverthe-
less affect the shape of the di-electron mass spectrum
shown in sect. 3.2. The A Dalitz decay branching ratio,
defined at the pole mass is, however, mainly determined
by the values of the form factor at very low ¢?. The
branching ratio obtained using the two-component quark
model form factor is about 10% larger than with the
constant value, as discussed in sect. A.2.1. This derives
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Fig. 7. (Color online) The distribution dI'/dme. as a func-
tion of me. for 3 different A masses. Solid curves: pole mass
ma = 1.232GeV, long-dashed curves: ma = 1.5GeV and
short-dashed curves: ma = 1.8 GeV. The description from [33]
is applied. The upper set of black curves has been calculated
with the two-component quark model from ref. [30-32] whereas
the lower set of grey (green) curves has been obtained with the
constant transition amplitudes as described in the text.

from the fact that the parameters of the model are fitted
to a set of data over a large ¢ range, which results in
a slightly too high value for the magnetic form factor at
> =0.

One should note that, in the semi-classical description,
this would correspond to the production of an on-shell p
meson, which should therefore not be added then as an in-
dependent contribution when enabling the two-component
quark model.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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