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Pharmaceutical and non-pharmaceutical interventions (NPIs) have been crucial for
controlling COVID-19. They are complemented by voluntary health-protective behavior,
building a complex interplay between risk perception, behavior, and disease spread. We
studied how voluntary health-protective behavior and vaccination willingness impact the
long-term dynamics. We analyzed how different levels of mandatory NPIs determine how
individuals use their leeway for voluntary actions. If mandatory NPIs are too weak, COVID-
19 incidence will surge, implying high morbidity and mortality before individuals react; if
they are too strong, one expects a rebound wave once restrictions are lifted, challenging
the transition to endemicity. Conversely, moderate mandatory NPIs give individuals time
and room to adapt their level of caution, mitigating disease spread effectively. When
complemented with high vaccination rates, this also offers a robust way to limit the impacts
of the Omicron variant of concern. Altogether, our work highlights the importance of
appropriate mandatory NPIs to maximise the impact of individual voluntary actions in
pandemic control.

Keywords: COVID-19, disease modeling, infodemic, human behavior, self-regulation, vaccine hesitancy, health
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1 INTRODUCTION

During the COVID-19 pandemic, the virus has played a central role in people’s day-to-day
conversations and the information they search for and consume [1]. The growing amount of
news and specialized literature on COVID-19 can inform individual decisions in a wide range of
situations and on various timescales [2]. For example, people decide multiple times every day how
closely they follow mask-wearing regulations or meeting restrictions. However, if hesitant, they
might take weeks or months to decide whether to accept a vaccine. These decisions impact the
spreading dynamics of COVID-19 and ultimately determine the effectiveness of interventions and
how smoothly we transit to SARS-CoV-2 endemicity.

While typical models of disease spread consider that individual behavior affects the spreading
dynamics of an infectious disease, they often neglect that there is also a relation in the opposite causal
direction. This feedback loop comprises that, e.g., mass media regularly updates individuals on the
latest local developments of the pandemic, such as the current occupancy of intensive care units
(ICUs). This information affects individuals’ opinions and risk perceptions and, thus ultimately their
actions [3]. For example, given high perceived risk, individuals reduce their non-essential contacts
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beyond existing regulations and increase their willingness to
accept vaccine offers accordingly, an effect observed in
empirical research conducted with routine surveys in Germany
[4] and other parts of the world [5–8]. However, to quantify the
effect of individual voluntary actions on the dynamics of COVID-
19, two questions remain open: 1) What is the relationship
between risk perception and voluntary action, on the one
hand, and the spread of the disease, on the other hand; and 2)
what is the relative contribution of voluntary action when
mandatory restrictions are in place?

In this work, we aim to quantify the impact of voluntary
actions on disease spread while studying the questions mentioned
above for the COVID-19 pandemic. 1) We analyze survey and
COVID-19 vaccination data in European countries to uncover
the relationship between the occupancy of ICUs—which
determines the perceived risk—and voluntary immediate
health-protective behavior as well as the willingness to get
vaccinated. We then incorporate these effective feedback loops
into a deterministic compartmental model (Figure 1A). 2) We

decompose the overall contact structure into contextual contacts
(Figure 1B) and for each context define a range in which
voluntary action can be adapted according to individual risk-
perception, given the level of mandatory non-pharmaceutical
interventions (NPIs). To that end, we use the functional form
identified in 1) (Figure 2). We explore different intervention
scenarios in the face of adverse seasonality [9–11], using as
reference the winter 2021/2022 in central Europe. Our analysis
confirms that both extremes (“freedom day” or stringent
measures throughout) bear large harms in the long run.
However, when measures leave space for voluntary actions,
people’s adaptive behavior can efficiently contribute to
breaking the wave and change the course of the pandemic.

2 RESULTS

2.1 Data-Derived Behavioral Feedback
Loops
Throughout this manuscript, we investigate how the interplay
between information about the COVID-19 pandemic and its
spreading dynamics is mediated by the perception of risk. Risk
perception modulates both, 1) people’s immediate voluntary
health-protective behavior, e.g., their level of contacts and
their adherence to mask-wearing and hygiene
recommendations, and 2) their willingness (or hesitancy) to
receive vaccination (Figure 1). Individuals constantly receive
information on the current COVID-19 incidence, ICU
occupancy, and deaths (which are all closely related [13–15])
either via news outlets or because of reports about COVID-19
cases in their social circles. Hence, the risk they perceive depends
on this evolving trend over time.

We tailor our approach to the situation of the COVID-19
pandemic, i.e., to a disease having the following characteristics: 1)
high transmissibility, 2) relatively low infection fatality rate, 3)
widespread vaccine hesitancy, 4) waning immunity, and 5) public
attention and coverage. We differentiate from the approaches of
[16–18] as we neither model the contagion of fear explicitly nor a
direct coupling between incidence and fear. Instead, we assume
that individuals build their perception of risk based on the ICU
occupancy over time using a memory function, similar to the
theoretical approach in [19, 20]. This is a sensible choice, as ICU
occupancy signals 1) how likely governmental bodies are to re-
implement emergency NPIs to prevent overwhelming healthcare
facilities (and thereby limit individual freedoms), and 2) how
likely it is that an individual’s close contacts (or their contacts)
would have been severely ill. Besides, our modeling framework
constitutes a methodological advancement from that presented in
[17], as we provide a detailed description of all epidemiologically
relevant disease states and several external effects influencing its
spread, such as seasonality, contextual contact networks
and NPIs.

We assume that individuals base their decisions about heath-
protective behavior on the recent developments of the pandemic.
Following the ideas of Zauberman et al. about perception of time
in decision-making [21], we consider that when individuals
decide about behavior that only has immediate protective

FIGURE 1 | Interplay between risk perception and voluntary health-
protective behavior. (A): Sketch of the proposed age-stratified compartmental
model of disease spread, which incorporates different stages for disease
progression and immunological conditions of the susceptible population
with their respective chances of being infected and developing a severe
course (Supplementary Figure S1, Supplementary Information, for full
model). The behavioral feedback (blue lines) changes individuals’ contagious
contact behavior, as well as their willingness to get vaccinated, and hence the
effective spreading rate. (B): We use the contact matrix of [12], which yields
the contact rates at home, school, work and in the community for each age-
group. For the subsequent scenarios, we adapt these contexts of contacts
separately. Some of the contacts are by definition hard to reduce voluntarily
(e.g., household contacts), while others (at school and work) strongly depend
on current mandatory non-pharmaceutical interventions (Supplementary
Figure S3 for details).
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effects, they consider only the current risk-level. For instance,
when deciding whether or not to wear a mask in the
supermarket on a given day, they only consider the most
recently reported ICU occupancy. Decisions with longer-term
protection, in contrast, are also based on a longer-term risk-
assessment. When deciding whether or not to get a booster
vaccine, for example, individuals do not only take into account
the ICU-occupancy on the day of the decision but they are
looking back at a longer period. We detail the assumptions
about the perceived risk-level and the resulting health-
protective behavior in the Methods section. In the following,
we sketch the derivation of the feedback loops from this
perceived risk to people’s immediate voluntary health-
protective behavior and willingness to get vaccinated.

2.1.1 Feedback on Health-Protective Behavior
To determine the explicit relationship between the perceived level
of risk and immediate voluntary health-protective
behavior—which presents one of the feedback loops in our
model—we exploit results from the German COSMO study, a
periodic survey where participants are asked about their opinions
and behavior regarding the COVID-19 pandemic and NPIs [4].

Their answers on adhering to health-protective behavior
recommendations (avoiding private parties in this case)
correlate with the ICU occupancy in Germany at the time
(Figure 2A). However, at very high ICU occupancy, adoption
of health-protective behavior seems to reach a plateau
(Figure 2B); no further adoption seems to be feasible,
arguably because those individuals willing to engage in health-
protective behavior have done so already as far as they can, and
those unwilling are insensitive to higher burden on ICUs. Hence,
we fit a piece-wise linear function (with a rounded edge at the
transition—called a softplus) to the COSMO data [Pearson
correlation coefficient r = 0.64 for 2020–2021 (black), r = 0.81
for 2020 (red) and r = 0.53 for 2021 (yellow)] and use it for the
feedback between information in terms of ICU occupancy and
voluntary health-protective behavior (Figure 2C andMethods for
details).

2.1.2 Feedback on Vaccination Behavior
The second feedback loop in our model describes the relationship
between the level of perceived risk and vaccine hesitancy. To
quantify it, we study the vaccination trends in different European
countries and compare them with the trends in ICU occupancy

FIGURE 2 |Data-derived formulation of behavioral feedback loops. (A): Reported contact reductions follow intensive care unit (ICU) occupancy in Germany. Survey
participants were asked how likely they were to avoid private parties over the course of the pandemic on a discrete scale from 1 (never) to 5 (always) [4]. To decouple the
effect of vaccination availability, we present 2020 (red) and 2021 (yellow) data separately. Ticks indicate the middle of the month. (B): The survey data on contact
reduction and the ICU occupancy are related. The piece-wise linear relationship shows the reduction of contacts with increasing ICU occupancy, and for even
higher ICU occupancy a saturation. Red, yellow, and black represent fits to the data from 2020, 2021, and overall, respectively. (C): In the model, the contact reduction
and its dependency on ICU occupancy is implemented as amultiplicative reduction factor k that weighs the age-dependent contextual contact matrices (Figure 1B). (D):
Vaccine uptake increases with ICU occupancy in Romania (shown here) and other European countries (Supplementary Figure S4). (E): Willingness to accept a vaccine
offer is modeled using an exponentially-saturating function, ranging between a lower and upper bound of acceptance depending on ICU occupancy. The bounds
represent that a fraction of people is willing to be vaccinated even at no immediate threat (no ICU occupancy), and another fraction is not willing or able to get vaccinated
nomatter the threat. (F): Vaccines are delivered at a rate proportional to the number of people seeking a vaccine, i.e., the difference between the number of people willing
to be vaccinated and those already vaccinated. Thus, when the number of already vaccinated equals the number of people willing to get vaccinated, no more
vaccinations are carried out. The same functional shape describes the booster uptake.
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(Supplementary Figure S4, Supplementary Information). The case
of Romania (Figure 2D) illustrates the relation very clearly:
Vaccination rates follow the ICU occupancy with a delay of a
few weeks. By analyzing the correlation between vaccination rate
and ICU occupancy with a variable delay, we reach the highest
Pearson correlation coefficient (0.96) with a delay of 25 days.
However, the specific reaction delay and magnitude of the effect
differs between countries (Supplementary Figure S4). In ourmodel,
we propose that as ICU occupancy increases so does the willingness
to get vaccinated (i.e., higher probability of accepting a vaccine offer
when ICU occupancy is high). As not everybody in the population is
willing to accept a vaccine offer, the willing fraction of the population
is a function that saturates below 1 (Figure 2E). With this
formulation, vaccinations are only carried out if the fraction of
the population willing to get vaccinated is larger than the fraction of
currently vaccinated (Figure 2F and Methods for details).

Our model can capture two features observed in real-world
vaccination programs. First, when case numbers are low and
vaccine uptake high, rational agents might have insufficient
incentives for getting vaccinated. Assuming a high perceived
risk of vaccine side effects, the agents would thus decline
vaccination when offered. The above is known as the free-rider
problem in game theory and economics [22]. Second, the two
feedback loops in our model and the incorporation of waning
immunity allows us to observe different incidence curve shapes and
replicate recurrent waves of infections. The above is a necessary
validity check, as real-world outbreaks exhibit a large variety of
incidence curve shapes [23]. These may ultimately unveil universal
patterns of disease spread that are consistent across countries [24].

2.2 Behavioral Feedback Loops Yield More
Realistic Results than Classical Models
Classical SEIR-like compartmental models have found wide
application in the first stages of the COVID-19 pandemic. In

these models, the different stages of disease progression are
represented by separate compartments and individuals transit
from one to another at a given (and typically constant) transition
rate. In that way, an infectious disease outbreak will proliferate if
the spreading rate of the disease is larger than the recovery rate
and if a large-enough fraction of the population is susceptible to
being infected. However, these simple models often tend to
overestimate the size of an infectious disease outbreak or all
possible trajectories for the incidence trends [23], as they do not
incorporate mechanisms of dynamical adaptation of restrictions
[25] or, as studied in this paper, behavior.

We observe that including the feedback loops described
above reduces the peak in incidences and hospitalizations
while keeping the timing of the wave almost unchanged (see
Figure 3). More generally, these feedback loops break
increasing and declining trends, resulting in long but flat
infection plateaus or multiple waves. Compared to classical
SEIR-like models, where two dynamical regimes are
possible—exponential growth or decay of case numbers,
when neglecting waning immunity—, our model captures a
broader spectrum of dynamics by linking ICU occupancy with
individuals’ health-protective voluntary behavior and vaccine
uptake.

2.3 Policies With Either too Weak or too
Strong Interventions Throughout Winter
Bear Higher Levels of Mortality and
Morbidity
Using parameters obtained from surveys and other data
sources (Supplementary Table S3, Supplementary
Information), we analyze five scenarios of mandatory NPIs
throughout winter (for all age-stratified results see
Supplementary Material): 1) no NPIs at all, 2)-4)
moderate NPIs and 5) strong NPIs (Methods for details).
The stringency of the scenarios and the seasonal effects are
depicted in Figures 4A,B and Figures 5A,B. As an example
case, we assume a country with a total vaccination rate of 60%
and a recovered fraction of 20%. Note that we include the
possibility of overlaps between vaccinated and recovered.
Thus, the total fraction of immune individuals does not
add up to 80% but 68%. For more detail on the initial
conditions, see Supplementary Material, Supplementary
Section S3.1.

Without any mandatory NPIs throughout winter (Scenario 1,
Figure 4, black lines), case numbers and hospitalizations will
show a steep rise (Figures 4C,D). As a consequence, individuals
voluntarily adapt their health-protective behavior and are more
inclined to accept a vaccine offer (Figures 4E–G). Although this
scenario features unrealistically high mortality and morbidity,
modeling results in the absence of any behavior feedback
mechanisms yield even higher levels (cf. Figures 4C,D, dotted
red line).

In contrast, suppressing the seasonal wave through strong
mandatory NPIs (Scenario 5, Figure 4, mint lines) and
thereby maintaining low case numbers through winter only
delays the wave to a later but inevitable date once restrictions

FIGURE 3 | Incorporating behavioral feedback loops in compartmental
models broadens the dynamic range of the solutions and yields more realistic
results. Different variations of a compartmental model are displayed to show
the effect of the two feedback loops used in our model: When ICU
occupancy increases, individuals increase their health-protective behavior and
are more willing to be vaccinated. This dynamical adaptation can break a wave
at lower case numbers and lead to extended infection plateaus (blue curves),
which a classic compartment model is unable to reproduce as it does not
incorporate the population’s reaction to the disease (red curve).
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are lifted (Figures 4C,D). Low COVID-19 incidence
throughout winter implies 1) low post-infection immunity,
2) little incentives for first or booster vaccination, 3) waning
immunity, and 4) lower rates of “naturally” boosting immune
memory upon re-exposure to the virus [26]. The resulting low
immunity levels (Figure 4G) then fuel a higher rebound wave
when restrictions are lifted in March 2022, despite favorable
seasonality. Similar rebound waves have been observed for
other seasonal respiratory viruses [27, 28].

Interestingly, the middle strategy, namely moderate NPIs
during winter, prevents the high wave in winter as well as the
rebound wave in spring that characterize the scenarios with no
or with strong NPIs, respectively (Scenario 3, Figure 4, dark
blue). Unlike in the extreme scenarios, the ICU capacity in
Scenario 3 is not exceeded in any season, hence avoiding
reduced health care quality and strong burden to health
care workers. Figure 4H shows that the death toll in
Scenario 3 is lower than in the other scenarios. In reality
however, this difference would be much larger because
Scenarios 1 and 5 surpass the assumed ICU capacity by far;
that would imply disproportionally higher mortality, an effect
we did not quantify in our model. Alternatively, emergency

mandatory NPIs would be introduced, which we do not
model here.

2.4 Voluntary Actions can Dampen theWave
if Restrictions are Moderate
As presented in the previous section, extreme scenarios
(Scenarios 1 and 5) bear high levels of morbidity and
mortality. However, in scenarios with intermediate restriction
levels (Scenarios 2–4, Figure 5A), voluntary preventive actions
(Figure 5E) can compensate for slightly too low levels of
mandatory NPIs, provided that these NPIs are strong enough
to prevent a surge in COVID-19 incidence that might be too
sudden or strong for individuals to voluntarily adopt health-
protective behavior (Figures 5C,D). For example, while having
different levels of mandatory NPIs, Scenarios 2 and 3 reach
similar peaks in ICU occupancy (Figure 5D). Conversely,
despite considering a proportional increase in the strength of
NPIs (comparable to that from Scenario 2 to 3, Figure 5A),
Scenario 4 is too protective: there are too few incentives to get
vaccinated (Figure 5F) due to the low risk perception as well as
too few infections (Figure 5C) and, hence, appropriate immunity

FIGURE 4 | Maintaining moderate contact restrictions throughout winter outperforms extreme scenarios in balancing the burden on ICUs by allowing
people the freedom to act according to their risk perception. The level of mandatory NPIs sustained throughout winter 2021/2022, together with people’s
voluntary preventive actions, determines case numbers and ICU occupancy over winter and beyond. Ticks are set on the first day of the month. (A): The three
displayed scenarios of mandatory NPI stringency in winter reflect “freedom-day” with only basic hygiene measures (black), considerable contact
reduction and protective measures (e.g., mandatory masks) in school, at the workplace and in the community (blue), and strong contact reduction and partial
school closure (mint). All measures are gradually lifted centred around 1 March 2022, over the course of 4 weeks. (B): The seasonality of the basic
reproduction number R0. (C,D): Scenario 1 (black): Without mandatory restrictions, incidence and ICU occupancy increase steeply; this increases voluntary
health-protective behavior and vaccine uptake in the population (E,F), and leads to higher rates of naturally acquired immunity (G), but also high mortality and
morbidity in winter (H). Note that disproportionally more vaccinated individuals die after March 2022 because, at this point, most of the population is
vaccinated. A “full wave” is added in (C,D) (red dotted line), depicting the development of case numbers and ICU occupancy in the absence of behavioral
feedback mechanisms. Scenario 3 (blue): Maintaining moderate restrictions would prevent overwhelming ICUs while allowing for higher vaccine uptakes and
rates of post-infection immunity. Scenario 5 (mint): Maintaining strong restrictions would minimize COVID-19 cases and hospitalizations in winter, generating
a perception of safety across the population. However, this perceived safety is expected to lower the incentives to get vaccinated. Furthermore, immunity of
all kinds will wane over winter. Altogether, this can cause a severe rebound wave if restrictions are completely lifted in March. Furthermore, in all scenarios
where ICU capacity is exceeded, we would in reality expect either disproportionally higher mortality due to the burden on the health system or a change in
mandatory NPIs.
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levels are not reached (Figure 5G). As a consequence, a
disproportionally larger off-seasonal wave in spring
overwhelms ICUs (Figure 5D). Noteworthy, even though the
nominal mortality is the lowest for Scenario 4 (Figure 5H), this
value does not account for triage-induced over-mortality or novel
necessary NPIs that would be likely be imposed and is thus
invalid.

2.5 Case Study: Emergence of the Omicron
Variant of Concern and its Effect on Case
Numbers
A risk that cannot be neglected is the emergence of SARS-CoV-2
variants of concern (VOC), such as the Omicron VOC. This
variant is rapidly replacing the Delta VOC, thus posing an
imminent risk. Although there is substantial uncertainty about
its epidemiological features, preliminary evidence shows:
Compared to the Delta VOC, Omicron exhibits 1) an
increased risk of reinfection or break-through infection
[29–31], 2) a substantial reduction in antibody neutralization
[32–38], 3) a reduction in vaccine effectiveness against infection
[31, 37, 39–44], and 4) faster spread [30, 31, 45, 46] mainly due to
immune escape [47].

Given this evidence, we analyze the impacts of a potential full
replacement of the dominant Delta VOC by the Omicron VOC
by 15th of January 2022. We incorporate the protection against
infection by booster doses. As example scenario, we start with
Scenario 3 (moderate mandatory NPIs), as it resembles a typical
development in Europe. We then analyze four different possible

reactions to the Omicron VOC, i.e., starting to switch from
Scenario 3 to Scenarios 1, 3, 4, or 5 before it takes over
(Figure 6A). We evaluate three possibilities regarding the
booster vaccine-protection against infection, 50, 65, and 80%
(relative to the protection granted for Delta). This is consistent
with available evidence suggesting Omicron’s immune escape to
reduce vaccine effectiveness against symptomatic disease to about
73% for freshly mRNA-boosted individuals [32]. Furthermore,
we explore two possibilities of severity of infections after previous
immunization: Either efficacy against severe course remains the
same as with Delta, both for the immunized and immune-naive
persons (Figures 6B,E,H), or protection is five times better for
the immunized (Figures 6C,F,I).

As expected, the enhanced transmissibility resulting from the
partial escape of the Omicron VOC breaks the decreasing trend in
case numbers observed for Scenarios 3, 4, and 5 from the moment
where the replacement takes place (Figures 6A,D,G). This results
in a substantial surge in daily new cases in all scenarios except for
Scenario 5 (most restrictive). Regarding ICU occupancy, our
results depend strongly on the assumed protection against
infection by recent vaccination or boosters. When the
protection against infection granted by recently administered
vaccines is above 50%, both Scenarios 4 (which has a more
strict testing policy and further reduced contacts compared to
Scenario 3) and 5 (in addition, group sizes in school are reduced)
yield optimistic results for ICU occupancy. If Omicron infections
lead to much less severe course of the disease for immunized or
convalescent individuals, then even Scenario 3 can avoid severely
overfilling intensive care units. We have represented Scenario 1

FIGURE 5 | Moderate restrictions leave enough room for effective adaptation of behavior to perceived risk. (A): We explore three scenarios with similar levels of
moderate mandatory NPIs sustained throughout winter, the period of adverse seasonality (B). Considering Scenario 3 as reference, moderate restrictions seem to be
robust against relaxations of NPIs, as both morbidity and mortality are similar to that of Scenario 2 (C,D,H). However, a perturbation with less strength in the opposite
direction (Scenario 4, increasing mandatory NPIs) has a disproportional effect on ICU occupancy. These differences are based on the modulation of voluntary
contacts (E) and vaccine uptake (F). Thus, when leaving room for adaption of health-protective measures to perceived risk, people’s behavior will stabilize moderate
scenarios where mandatory NPIs are strong enough to prevent a major surge, but not over-protective, so individuals find it rewarding to be vaccinated and to adapt their
level of contacts. Note that disproportionally more vaccinated individuals die after March 2022 because, at this point, most of the population is vaccinated (G).
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(lifting all mandatory NPIs) with dashed lines, as it yields
unrealistic results: Stricter NPIs would probably be
reinstated if ICU occupancy becomes too high. The
scenarios end in April, where we expect that an updated
booster vaccine is developed and distributed. In that phase,
lifting restrictions at the pace of vaccination and aiming for low
case numbers would maximize freedom while minimizing
mortality and morbidity [25, 48–50].

3 DISCUSSION

Modeling the interplay of human behavior and disease spread is
one of the grand challenges of infectious disease modeling. While
not being the first to model behavioral adaptation [17, 51–55], we
incorporate data-driven insights into our modeling framework,
inspiring the explicit functional dependency between risk and
health-protective behavior as well as vaccine hesitancy in the
context of the COVID-19 pandemic. Thereby, we can incorporate

self-regulation mechanisms into our scenario analysis, which best
qualitatively describe what is to be expected in the future or in the
event of the emergence of novel SARS-CoV-2 VOCs, such as the
Omicron variant. We hence take a further step towards more
empirically-grounded mathematical models.

Within our framework, a smooth transition to SARS-CoV-2
endemicity requires, besides a working and accepted vaccine, two
ingredients. First, mandatory NPI levels should be high enough to
prevent a surge in case numbers so fast that individuals could not
react on time to prevent overwhelming ICUs. Second, mandatory
NPIs should leave enough room so that individuals can effectively
adopt voluntary preventive actions as a response to an increased
perception of risk. Hence, governments must guarantee that the
decision to, e.g., attend non-essential face-to-face activities that
could be carried out remotely remains in the individual’s hands.
Under such circumstances, voluntary actions can dampen the
wave and prevent overwhelming ICUs (Scenarios 2 and 3,
Figure 5). Otherwise, irresponsible or overprotective measures
would result in a wave that could surpass the healthcare capacity

FIGURE 6 |Development of the pandemic under the emergence of the Omicron VOC. Assuming a full replacement of Delta by the Omicron VOC on 15th of January
2022, we model three different possibilities for vaccine-protection against infection, and two levels of long-lasting vaccine- or post-infection protection against severe
course (A–I). In color, we display four scenarios that are derived from the previously studied ones (J,K). All scenarios share moderate mandatory NPIs until mid
December 2021, where we evaluate different possibilities for policy adaptation to mitigate the spread of the Omicron VOC. (A,B,D,E,G,H): Case numbers and ICU
occupancy while assuming that a protection against hospitalization (once infected despite previous immunization) is similar to the protection against Delta. (C, D, I): ICU
occupancy while assuming a protection against hospitalization (once infected and after previous immunization) five times better than the protection regarding Delta.
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in the short term or when lifting all measures (Scenarios 1, 4, and
5, Figures 4, 5). In any case, people’s awareness about the danger
of a disease should ideally be driven by trust in scientific and
governmental bodies instead of by the current burden to the
healthcare system. Hence, it is crucial during a disease outbreak to
engage in extensive, expert-guided, and audience-tailored risk
communication [56] and to prevent the spread of mis- and dis-
information that could damage general trust [57, 58].

Despite the empirical basis of our approach, the functional
shape of the feedback mechanisms remains one of the main
uncertainties in our model. The voluntary adoption of health-
protective measures was inspired by survey data [4], and is thus
bound to its limitations. Additionally, as ICU capacity was never
extremely overwhelmed in Germany in the time frame of the
COSMO survey, the study does not provide information on how
people would act at very high levels of ICU occupancy; in
principle, such emergency situations would trigger even
stronger reactions in the population, and certainly also a
change in NPI stringency (which we assumed to be constant
throughout). Furthermore, when extrapolating our results to
other countries, one should consider cultural differences or
varying levels of trust in governmental bodies. Therefore, more
empirical research to inform model assumptions and parameters
remains crucial.

Vaccine uptake and coverage are critical parameters that
determine mortality and morbidity levels. In line with what
has been observed in high-income countries, we assume that
vaccination rates are mostly limited by vaccine hesitancy instead
of vaccine stocks or logistics. In that way, we can deal with
emergent VOCs (as Omicron) with a healthy combination of
mandatory NPIs aiming for low-case numbers while a working
vaccine is developed and coverage is insufficient [25, 48] and by
letting individuals decide on their own when the roll-out is
complete. However, the core problem remains latent; wealthy
countries concentrate resources while some countries cannot
afford enough vaccines to protect even their population at risk
[59]. As the latter countries are forced into accepting high-case
numbers in order to keep their economies running, there are
increased risks of breeding variants that could escape natural or
vaccine-elicited protection [60]. Therefore, vaccine policy
planning from an international perspective is critical for a
smooth transition to SARS-CoV-2 endemicity.

Modeling the introduction and spread of different SARS-CoV-
2 variants in a population is challenging. At the very least,
modeling these dynamics would require having separate
compartments for all the disease states of all circulating
variants, disproportionally increasing the complexity of our
model. In our approach, we take advantage of the extensive
immune escape of the Omicron VOC to natural and vaccine-
elicited neutralization [29, 31, 32, 45, 47], and assume that the
replacement of Delta VOC occures very quickly (i.e., basically
instantaneously) in mid-January. This simplification is not too
distant from reality; replacement of Delta and other predominant
sublineages for Omicron took only a few weeks in several
countries [61]. For the spread of Omicron, we use the same
basic reproduction number as for Delta but instead consider most
individuals previously immunized to have lost protection against

infection, i.e., they are moved to the susceptible pool (Methods for
details). Thereby, we can capture the explosive spread of Omicron
VOC without increasing the base transmissibility. We
furthermore include that those people having received a
booster vaccine maintain some protection against infection
with Omicron, which, however, also wanes. These assumptions
are consistent with a large Danish cohort of households, where
the secondary attack rate among unvaccinated was slightly higher
for Delta infections than for Omicron [47], and with extensive
experimental and observational studies [32, 38, 62, 63]. Despite
the approximation we did for the transition to the Omicron
variant, the mid- and long-term dynamics of the Omicron VOC
should be reflected well.

In our work, the level of mandatory NPIs dictates the
minimum and maximum level of voluntary health-protective
behavior that individuals may adapt. For each scenario, we
assume one specific, static level of mandatory NPIs, which
best resembles real-world observations on compulsory
measures aiming to reduce the probability of contagion
(i.e., mask-wearing mandates, immunity passports, meeting
restrictions, among others) and testing policy (as described in
Methods). However, this static level can lead to unrealistically
high waves of incidence and ICU occupancy, which 1) have not
been seen so far and 2) would undoubtedly trigger the
implementation of additional restrictions to prevent a major
collapse in the health system. Nonetheless, we decided to
incorporate this static mandatory NPI level because it
illustrates a worst-case trajectory of each scenario. Besides, due
to pandemic fatigue [64], we would expect the effectiveness of
interventions and thus the imposed change in health-protective
behavior in the different mandatory NPI scenarios to decay
over time.

In summary, the way governments approach a pandemic
situation when vaccines are available will shape long-term
transmission dynamics by influencing the magnitude of
information-behavior feedback loops. We show that the latter
play a major role during the transition from epidemicity to
endemicity. Thus most importantly, the challenge for
authorities is to find ways to engage individuals with
vaccination programs and health-protective behavior without
requiring high case numbers for that. Here, clear
communication and trust continues to be essential [65].

4 METHODS

4.1 Model Overview
We use an age-stratified compartmental model with
compartments for susceptible-exposed-infected-recovered
(SEIR) as well as for fatalities (D), receiving treatment in an
ICU (ICU), and vaccination (first time and booster vaccines) (V)
(Supplementary Figure S1). We also include waning immunity
and seasonality effects (Figures 4, 5B). To account for behavioral
change induced by perceived risk of infection, we include a
feedback loop between ICU occupancy, voluntary health-
protective behavior and willingness to receive vaccination
(Figure 2 and Supplementary Material). Explicitly, we assume
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that increases in ICU occupancy 1) decrease the contact rates
among the population and thus the spreading rate of COVID-19
[4–7], and 2) increase vaccine acceptance among hesitant
individuals [4, 8]. For the first feedback loop (voluntary health
protective behavior), we assume that individuals adapt their
contacts in different contexts depending on the risk they have
perceived recently. The level of potentially contagious contacts is
multiplied by a factor k that decreases with ICU occupancy
between the minimum and maximum allowed by current
mandatory NPIs (Figure 2C). Regarding the second feedback
loop (related to vaccine uptake), we assume that a fraction of the
population will always accept a vaccination offer, despite current
ICU occupancy. From this minimum onward, vaccination
willingness monotonically increases with ICU occupancy and
saturates towards a maximum, accounting for a fraction of the
population that will never accept the vaccine (Figure 2E). This
means that we assume that there is a fraction in the population
that is certainly not able or willing to be vaccinated. Given a
fraction of people willing to be vaccinated, we determine the
speed of the vaccination program using a linearly increasing
function (Figure 2F). We model these two feedback loops to act
on different timescales, as individuals can, e.g., decrease the
number of contacts and contact intensity on a daily basis,
while getting vaccinated takes longer. To capture this, we
explicitly include memory kernels accounting for how
individuals subjectively weigh events happening on different
timescales when forming their perception of risk [21].

4.2 Memory on Perceived Risk
We assume that perceived risk regarding the disease depends on
information about ICU occupancy that reaches individuals via
media or affected social contacts. This perception of risk builds
over time; people are not only aware of the occupancy numbers at
the present moment but also of those in the recent past. To
incorporate this into our model, we calculate the convolution of
the ICU occupancy with a Gamma distribution (Supplementary
Figure S2, Supplementary Information), effectively “weighting”
the ICU occupancy numbers with their recency into a variable of
risk perception which we call HR. As a result, ICU occupancy
numbers from a few days ago weigh more in people’s memory
and thus influence voluntary health-protective behavior at the
present moment more than ICU occupancy that lies further in the
past. We use this concept of ICU occupancy “with memory” to
design the functions of the feedback loops (Figures 2B,C,E,F).
The effect of the parameters chosen for the Gamma distribution
on the model results as well as of all other model parameters is
quantified in the sensitivity analysis, Supplementary Section S4,
Supplementary Information.

4.3 NPI- and Risk-Induced Change in
Health-Protective Behavior
When analyzing the joint effect of mandatory NPIs and voluntary
measures to mitigate the spread of COVID-19, we find a strong
overlap between them; mandatory NPIs limit the range of the
measures that individuals could voluntarily take to protect
themselves and their loved ones. For example, when large

private gatherings are officially forbidden, individuals cannot
voluntarily choose not to meet. Additionally, when the
engagement of the population in voluntary protective
measures is very large, certain mandatory NPIs would not be
required. We model the combined effect of mandatory NPIs and
voluntary adoption of health-protective behavior as a function
kNPI, self (HR). Using the baseline of mandatory NPIs as an input,
this function calculates the level of voluntary preventive action in
dependence of the perceived risk HR. To be precise, the value of
kNPI, self (HR) ∈ [0, 1] represents the level to which (potentially
contagious) contacts of an average individual are reduced
(Figure 2C), a factor that is multiplied onto the entries of a
contact matrix separated by contexts (Supplementary Figure S3,
Supplementary Information). For example, adaption of voluntary
mask-wearing or a direct reduction of gatherings decreases the
level of potentially contagious contacts and, thereby, kNPI, self

(HR). Furthermore, we distinguish between contacts made at
home, in schools, in workplaces or during communal
activities. We weight all the interactions with different
k]NPI,self(HR) with
] ∈ Households, Schools,Workplaces,Communities{ } that act
on contextual contact matrices Cij

], see Supplementary
Section S1.2 and Figure 1.

Inspired by the COSMO survey data [4] (Figure 2B), we
suggest the following shape for k]NPI,self(HR): The level of
(potentially) contagious contacts decreases linearly upon
increases in the ICU-mediated perception of risk HR below a
thresholdHR =Hmax, from which point on no further reduction is
possible (Figure 2C). This might represent 1) a fraction of the
population agnostic to measures or unwilling to comply, or 2)
limitations of voluntary preventive action imposed by practical
constraints related to the current level of imposed restrictions, for
example, having to make contacts in one’s own household or
having to go to work or school. We implement k]NPI,self(HR) as a
softplus function, having a differentiable transition at Hmax. Each
function (for each scenario) is defined by 3 parameters Hmax,
k]NPI,self(HR � 0), and k]NPI,self(HR � Hmax). Hmax = 37 is
obtained by the fit to the COSMO data shown in Figure 2
(black line) and used for the two other fits shown in Figure 2
(red and yellow lines) as well as for the behavior parametrizations
for the different scenarios (Supplementary Figure S3,
Supplementary Information).

4.4 Different Mandatory NPI Scenarios
We choose to simulate five different scenarios, each having a
different level of overall stringency. In the following we briefly
describe the scenarios:

Scenario 1 (“Freedom day”): All mandatory restrictions are
lifted, resulting in a factor of k]NPI,self(HR � 0) � 1 ∀]. However, if
ICU occupancy increases, we leave room for individuals’
voluntary action based on perceived risk to reduce viral
transmission: k]NPI,self(HR > 0)< 1. We assume that communal
activities and workplaces leave more room for voluntary
preventive action than households and schools because of the
possibility of working from home, avoiding non-essential
gatherings etc. This difference is depicted in Supplementary
Figure S3.
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Scenario 2 (Moderate NPIs A): Easy-to-follow measures are
kept in place and potentially contagious contacts at school are
reduced to kSchoolNPI,self(HR � 0) � 0.5.

Scenario 3 (Moderate NPIs B): Further measures at work (e.g.,
home office or testing) reduce kWorkplaces

NPI,self (HR � 0) � 0.5.
Scenario 4 (Moderate NPIs C): Further reduction in

potentially contagious school contacts and restrictions affecting
communal contacts reduce kSchoolNPI,self(HR � 0) � 0.25 and
kCommunities
NPI,self (HR � 0) � 0.5.
Scenario 5 (Strong NPIs): Communal activities are further

reduced to kCommunities
NPI,self (HR � 0) � 0.2.

Table 1 lists all values for the different scenarios and
contexts of interaction between individuals. The reduction
of household contacts is assumed to remain the same for all
scenarios. Note that, as the stringency of measures increases,
room for voluntary adoption of health-protective behavior
usually decreases: To give an example, without mandatory
measures the level of contact reduction in communal activities
lies in the range 1−0.6, whereas in a scenario with strong
mandatory NPIs it lies in the range 0.2−0.1. The difference
between the two bounds effectively measures the room for
voluntary actions (0.4 for freedom day vs. 0.1 for strong NPIs).
An exception are school contacts in which moderate
restriction scenarios (2 and 3) display a wider range of
possible voluntary action than the freedom day scenario. As
health-protective behavior among children could be
encouraged but not imposed, their adherence to rules
constitutes a voluntary act.

4.5 Modeling the Introduction and Spread of
the Omicron VOC
Modeling the introduction and spread of the Omicron VOC
requires modifications to the model compartments, transition
rates, and parameters. In particular, these modifications allow
us to explore the effects of Omicron’s 1) extensive immune
escape and 2) potential reduced risk for severe course of the
disease. We implemented the introduction of Omicron VOC
as a total replacement of the previously dominating Delta
VOC on 15 Jan 2022. At that moment, we rearrange the
distribution of individuals between the “waned” and
“immune” compartments, increase the rate of waning
immunity to account for Omicron’s immune escape, and

reduce the probability of having a severe course. Explicitly,
before the introduction of the Omicron VOC, the immune
population is tracked in additional pseudo-compartments Vo,
Ro, Rv,o with a faster waning rate. In that way, there are
always less individuals in Vo, Ro, Rv,o than in V, R, Rv. At
the time of variant replacement, V − Vo, R − Ro, Rv − Rv,o

individuals are moved from the vaccinated and recovered
compartments to the respective waned compartments;
individuals previously protected against Delta would now
be susceptible to Omicron. We model booster-vaccination
protection against infection following a leaky scheme, thus
boostered individuals have a probability of η of being entirely
protected. With probability 1 − η, individuals remain in their
current compartment but are tracked as if the vaccine had
worked successfully.
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